Spaces:
Sleeping
Sleeping
Commit
·
05469a1
1
Parent(s):
ba632ba
yeah ok
Browse files- src/diffusion.py +26 -53
src/diffusion.py
CHANGED
@@ -13,25 +13,8 @@ class TimeEmbedding(nn.Module):
|
|
13 |
x = F.silu(self.linear_1(x))
|
14 |
return self.linear_2(x)
|
15 |
|
16 |
-
class SqueezeExcitation(nn.Module):
|
17 |
-
def __init__(self, channels, reduction=16):
|
18 |
-
super().__init__()
|
19 |
-
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
20 |
-
self.fc = nn.Sequential(
|
21 |
-
nn.Linear(channels, channels // reduction, bias=False),
|
22 |
-
nn.ReLU(inplace=True),
|
23 |
-
nn.Linear(channels // reduction, channels, bias=False),
|
24 |
-
nn.Sigmoid()
|
25 |
-
)
|
26 |
-
|
27 |
-
def forward(self, x):
|
28 |
-
b, c, _, _ = x.size()
|
29 |
-
y = self.avg_pool(x).view(b, c)
|
30 |
-
y = self.fc(y).view(b, c, 1, 1)
|
31 |
-
return x * y.expand_as(x)
|
32 |
-
|
33 |
class UNET_ResidualBlock(nn.Module):
|
34 |
-
def __init__(self, in_channels, out_channels, n_time=1280
|
35 |
super().__init__()
|
36 |
self.groupnorm_feature = nn.GroupNorm(32, in_channels)
|
37 |
self.conv_feature = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
@@ -39,26 +22,16 @@ class UNET_ResidualBlock(nn.Module):
|
|
39 |
self.groupnorm_merged = nn.GroupNorm(32, out_channels)
|
40 |
self.conv_merged = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
|
41 |
self.residual_layer = nn.Identity() if in_channels == out_channels else nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
|
42 |
-
|
43 |
-
# Add Squeeze-Excitation blocks only if use_se is True
|
44 |
-
self.use_se = use_se
|
45 |
-
if use_se:
|
46 |
-
self.se1 = SqueezeExcitation(out_channels)
|
47 |
-
self.se2 = SqueezeExcitation(out_channels)
|
48 |
|
49 |
def forward(self, feature, time):
|
50 |
residue = feature
|
51 |
feature = F.silu(self.groupnorm_feature(feature))
|
52 |
feature = self.conv_feature(feature)
|
53 |
-
if self.use_se:
|
54 |
-
feature = self.se1(feature) # Apply SE after first conv
|
55 |
|
56 |
time = self.linear_time(F.silu(time))
|
57 |
merged = feature + time.unsqueeze(-1).unsqueeze(-1)
|
58 |
merged = F.silu(self.groupnorm_merged(merged))
|
59 |
merged = self.conv_merged(merged)
|
60 |
-
if self.use_se:
|
61 |
-
merged = self.se2(merged) # Apply SE after second conv
|
62 |
|
63 |
return merged + self.residual_layer(residue)
|
64 |
|
@@ -112,42 +85,42 @@ class SwitchSequential(nn.Sequential):
|
|
112 |
return x
|
113 |
|
114 |
class UNET(nn.Module):
|
115 |
-
def __init__(self
|
116 |
super().__init__()
|
117 |
self.encoders = nn.ModuleList([
|
118 |
SwitchSequential(nn.Conv2d(4, 320, kernel_size=3, padding=1)),
|
119 |
-
SwitchSequential(UNET_ResidualBlock(320, 320
|
120 |
-
SwitchSequential(UNET_ResidualBlock(320, 320
|
121 |
SwitchSequential(nn.Conv2d(320, 320, kernel_size=3, stride=2, padding=1)),
|
122 |
-
SwitchSequential(UNET_ResidualBlock(320, 640
|
123 |
-
SwitchSequential(UNET_ResidualBlock(640, 640
|
124 |
SwitchSequential(nn.Conv2d(640, 640, kernel_size=3, stride=2, padding=1)),
|
125 |
-
SwitchSequential(UNET_ResidualBlock(640, 1280
|
126 |
-
SwitchSequential(UNET_ResidualBlock(1280, 1280
|
127 |
SwitchSequential(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1)),
|
128 |
-
SwitchSequential(UNET_ResidualBlock(1280, 1280
|
129 |
-
SwitchSequential(UNET_ResidualBlock(1280, 1280
|
130 |
])
|
131 |
|
132 |
self.bottleneck = SwitchSequential(
|
133 |
-
UNET_ResidualBlock(1280, 1280
|
134 |
UNET_AttentionBlock(8, 160),
|
135 |
-
UNET_ResidualBlock(1280, 1280
|
136 |
)
|
137 |
|
138 |
self.decoders = nn.ModuleList([
|
139 |
-
SwitchSequential(UNET_ResidualBlock(2560, 1280
|
140 |
-
SwitchSequential(UNET_ResidualBlock(2560, 1280
|
141 |
-
SwitchSequential(UNET_ResidualBlock(2560, 1280
|
142 |
-
SwitchSequential(UNET_ResidualBlock(2560, 1280
|
143 |
-
SwitchSequential(UNET_ResidualBlock(2560, 1280
|
144 |
-
SwitchSequential(UNET_ResidualBlock(1920, 1280
|
145 |
-
SwitchSequential(UNET_ResidualBlock(1920, 640
|
146 |
-
SwitchSequential(UNET_ResidualBlock(1280, 640
|
147 |
-
SwitchSequential(UNET_ResidualBlock(960, 640
|
148 |
-
SwitchSequential(UNET_ResidualBlock(960, 320
|
149 |
-
SwitchSequential(UNET_ResidualBlock(640, 320
|
150 |
-
SwitchSequential(UNET_ResidualBlock(640, 320
|
151 |
])
|
152 |
|
153 |
def forward(self, x, context, time):
|
@@ -175,10 +148,10 @@ class UNET_OutputLayer(nn.Module):
|
|
175 |
return self.conv(x)
|
176 |
|
177 |
class Diffusion(nn.Module):
|
178 |
-
def __init__(self
|
179 |
super().__init__()
|
180 |
self.time_embedding = TimeEmbedding(320)
|
181 |
-
self.unet = UNET(
|
182 |
self.final = UNET_OutputLayer(320, 4)
|
183 |
|
184 |
def forward(self, latent, context, time):
|
|
|
13 |
x = F.silu(self.linear_1(x))
|
14 |
return self.linear_2(x)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
class UNET_ResidualBlock(nn.Module):
|
17 |
+
def __init__(self, in_channels, out_channels, n_time=1280):
|
18 |
super().__init__()
|
19 |
self.groupnorm_feature = nn.GroupNorm(32, in_channels)
|
20 |
self.conv_feature = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
|
|
22 |
self.groupnorm_merged = nn.GroupNorm(32, out_channels)
|
23 |
self.conv_merged = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
|
24 |
self.residual_layer = nn.Identity() if in_channels == out_channels else nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def forward(self, feature, time):
|
27 |
residue = feature
|
28 |
feature = F.silu(self.groupnorm_feature(feature))
|
29 |
feature = self.conv_feature(feature)
|
|
|
|
|
30 |
|
31 |
time = self.linear_time(F.silu(time))
|
32 |
merged = feature + time.unsqueeze(-1).unsqueeze(-1)
|
33 |
merged = F.silu(self.groupnorm_merged(merged))
|
34 |
merged = self.conv_merged(merged)
|
|
|
|
|
35 |
|
36 |
return merged + self.residual_layer(residue)
|
37 |
|
|
|
85 |
return x
|
86 |
|
87 |
class UNET(nn.Module):
|
88 |
+
def __init__(self):
|
89 |
super().__init__()
|
90 |
self.encoders = nn.ModuleList([
|
91 |
SwitchSequential(nn.Conv2d(4, 320, kernel_size=3, padding=1)),
|
92 |
+
SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
|
93 |
+
SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
|
94 |
SwitchSequential(nn.Conv2d(320, 320, kernel_size=3, stride=2, padding=1)),
|
95 |
+
SwitchSequential(UNET_ResidualBlock(320, 640), UNET_AttentionBlock(8, 80)),
|
96 |
+
SwitchSequential(UNET_ResidualBlock(640, 640), UNET_AttentionBlock(8, 80)),
|
97 |
SwitchSequential(nn.Conv2d(640, 640, kernel_size=3, stride=2, padding=1)),
|
98 |
+
SwitchSequential(UNET_ResidualBlock(640, 1280), UNET_AttentionBlock(8, 160)),
|
99 |
+
SwitchSequential(UNET_ResidualBlock(1280, 1280), UNET_AttentionBlock(8, 160)),
|
100 |
SwitchSequential(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1)),
|
101 |
+
SwitchSequential(UNET_ResidualBlock(1280, 1280)),
|
102 |
+
SwitchSequential(UNET_ResidualBlock(1280, 1280)),
|
103 |
])
|
104 |
|
105 |
self.bottleneck = SwitchSequential(
|
106 |
+
UNET_ResidualBlock(1280, 1280),
|
107 |
UNET_AttentionBlock(8, 160),
|
108 |
+
UNET_ResidualBlock(1280, 1280),
|
109 |
)
|
110 |
|
111 |
self.decoders = nn.ModuleList([
|
112 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280)),
|
113 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280)),
|
114 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280), Upsample(1280)),
|
115 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)),
|
116 |
+
SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)),
|
117 |
+
SwitchSequential(UNET_ResidualBlock(1920, 1280), UNET_AttentionBlock(8, 160), Upsample(1280)),
|
118 |
+
SwitchSequential(UNET_ResidualBlock(1920, 640), UNET_AttentionBlock(8, 80)),
|
119 |
+
SwitchSequential(UNET_ResidualBlock(1280, 640), UNET_AttentionBlock(8, 80)),
|
120 |
+
SwitchSequential(UNET_ResidualBlock(960, 640), UNET_AttentionBlock(8, 80), Upsample(640)),
|
121 |
+
SwitchSequential(UNET_ResidualBlock(960, 320), UNET_AttentionBlock(8, 40)),
|
122 |
+
SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)),
|
123 |
+
SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)),
|
124 |
])
|
125 |
|
126 |
def forward(self, x, context, time):
|
|
|
148 |
return self.conv(x)
|
149 |
|
150 |
class Diffusion(nn.Module):
|
151 |
+
def __init__(self):
|
152 |
super().__init__()
|
153 |
self.time_embedding = TimeEmbedding(320)
|
154 |
+
self.unet = UNET()
|
155 |
self.final = UNET_OutputLayer(320, 4)
|
156 |
|
157 |
def forward(self, latent, context, time):
|