import torch import torch.nn as nn import torch.nn.functional as F from .decoder import VAE_AttentionBlock, VAE_ResidualBlock class VAE_Encoder(nn.Sequential): def __init__(self): super().__init__( nn.Conv2d(3, 128, kernel_size=3, padding=1), VAE_ResidualBlock(128, 128), VAE_ResidualBlock(128, 128), nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=0), VAE_ResidualBlock(128, 256), VAE_ResidualBlock(256, 256), nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=0), VAE_ResidualBlock(256, 512), VAE_ResidualBlock(512, 512), nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=0), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), VAE_AttentionBlock(512), VAE_ResidualBlock(512, 512), nn.GroupNorm(32, 512), nn.SiLU(), nn.Conv2d(512, 8, kernel_size=3, padding=1), nn.Conv2d(8, 8, kernel_size=1, padding=0), ) def forward(self, x, noise): for module in self: if getattr(module, 'stride', None) == (2, 2): x = F.pad(x, (0, 1, 0, 1)) x = module(x) mean, log_variance = torch.chunk(x, 2, dim=1) log_variance = torch.clamp(log_variance, -30, 20) variance = log_variance.exp() stdev = variance.sqrt() x = mean + stdev * noise x *= 0.18215 return x