from __future__ import annotations

import math
import random
import sys
from argparse import ArgumentParser

import einops
import k_diffusion as K
import numpy as np
import torch
import torch.nn as nn
from tqdm.auto import tqdm
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from torch import autocast

import json
import matplotlib.pyplot as plt
import seaborn
from pathlib import Path

sys.path.append("./")

from clip_similarity import ClipSimilarity
from edit_dataset import EditDatasetEval

sys.path.append("./stable_diffusion")

from ldm.util import instantiate_from_config


class CFGDenoiser(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model

    def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale):
        cfg_z = einops.repeat(z, "1 ... -> n ...", n=3)
        cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=3)
        cfg_cond = {
            "c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], uncond["c_crossattn"][0]])],
            "c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])],
        }
        out_cond, out_img_cond, out_uncond = self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(3)
        return out_uncond + text_cfg_scale * (out_cond - out_img_cond) + image_cfg_scale * (out_img_cond - out_uncond)


def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")
    sd = pl_sd["state_dict"]
    if vae_ckpt is not None:
        print(f"Loading VAE from {vae_ckpt}")
        vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"]
        sd = {
            k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v
            for k, v in sd.items()
        }
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)
    return model

class ImageEditor(nn.Module):
    def __init__(self, config, ckpt, vae_ckpt=None):
        super().__init__()
        
        config = OmegaConf.load(config)
        self.model = load_model_from_config(config, ckpt, vae_ckpt)
        self.model.eval().cuda()
        self.model_wrap = K.external.CompVisDenoiser(self.model)
        self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
        self.null_token = self.model.get_learned_conditioning([""])

    def forward(
        self,
        image: torch.Tensor,
        edit: str,
        scale_txt: float = 7.5,
        scale_img: float = 1.0,
        steps: int = 100,
    ) -> torch.Tensor:
        assert image.dim() == 3
        assert image.size(1) % 64 == 0
        assert image.size(2) % 64 == 0
        with torch.no_grad(), autocast("cuda"), self.model.ema_scope():
            cond = {
                "c_crossattn": [self.model.get_learned_conditioning([edit])],
                "c_concat": [self.model.encode_first_stage(image[None]).mode()],
            }
            uncond = {
                "c_crossattn": [self.model.get_learned_conditioning([""])],
                "c_concat": [torch.zeros_like(cond["c_concat"][0])],
            }
            extra_args = {
                "uncond": uncond,
                "cond": cond,
                "image_cfg_scale": scale_img,
                "text_cfg_scale": scale_txt,
            }
            sigmas = self.model_wrap.get_sigmas(steps)
            x = torch.randn_like(cond["c_concat"][0]) * sigmas[0]
            x = K.sampling.sample_euler_ancestral(self.model_wrap_cfg, x, sigmas, extra_args=extra_args)
            x = self.model.decode_first_stage(x)[0]
            return x


def compute_metrics(config,
                    model_path, 
                    vae_ckpt,
                    data_path,
                    output_path, 
                    scales_img, 
                    scales_txt, 
                    num_samples = 5000, 
                    split = "test", 
                    steps = 50, 
                    res = 512, 
                    seed = 0):
    editor = ImageEditor(config, model_path, vae_ckpt).cuda()
    clip_similarity = ClipSimilarity().cuda()



    outpath = Path(output_path, f"n={num_samples}_p={split}_s={steps}_r={res}_e={seed}.jsonl")
    Path(output_path).mkdir(parents=True, exist_ok=True)

    for scale_txt in scales_txt:
        for scale_img in scales_img:
            dataset = EditDatasetEval(
                    path=data_path, 
                    split=split, 
                    res=res
                    )
            assert num_samples <= len(dataset)
            print(f'Processing t={scale_txt}, i={scale_img}')
            torch.manual_seed(seed)
            perm = torch.randperm(len(dataset))
            count = 0
            i = 0

            sim_0_avg = 0
            sim_1_avg = 0
            sim_direction_avg = 0
            sim_image_avg = 0
            count = 0

            pbar = tqdm(total=num_samples)
            while count < num_samples:
                
                idx = perm[i].item()
                sample = dataset[idx]
                i += 1

                gen = editor(sample["image_0"].cuda(), sample["edit"], scale_txt=scale_txt, scale_img=scale_img, steps=steps)

                sim_0, sim_1, sim_direction, sim_image = clip_similarity(
                    sample["image_0"][None].cuda(), gen[None].cuda(), [sample["input_prompt"]], [sample["output_prompt"]]
                )
                sim_0_avg += sim_0.item()
                sim_1_avg += sim_1.item()
                sim_direction_avg += sim_direction.item()
                sim_image_avg += sim_image.item()
                count += 1
                pbar.update(count)
            pbar.close()

            sim_0_avg /= count
            sim_1_avg /= count
            sim_direction_avg /= count
            sim_image_avg /= count

            with open(outpath, "a") as f:
                f.write(f"{json.dumps(dict(sim_0=sim_0_avg, sim_1=sim_1_avg, sim_direction=sim_direction_avg, sim_image=sim_image_avg, num_samples=num_samples, split=split, scale_txt=scale_txt, scale_img=scale_img, steps=steps, res=res, seed=seed))}\n")
    return outpath

def plot_metrics(metrics_file, output_path):
    
    with open(metrics_file, 'r') as f:
        data = [json.loads(line) for line in f]
        
    plt.rcParams.update({'font.size': 11.5})
    seaborn.set_style("darkgrid")
    plt.figure(figsize=(20.5* 0.7, 10.8* 0.7), dpi=200)

    x = [d["sim_direction"] for d in data]
    y = [d["sim_image"] for d in data]

    plt.plot(x, y, marker='o', linewidth=2, markersize=4)

    plt.xlabel("CLIP Text-Image Direction Similarity", labelpad=10)
    plt.ylabel("CLIP Image Similarity", labelpad=10)

    plt.savefig(Path(output_path) / Path("plot.pdf"), bbox_inches="tight")

def main():
    parser = ArgumentParser()
    parser.add_argument("--resolution", default=512, type=int)
    parser.add_argument("--steps", default=100, type=int)
    parser.add_argument("--config", default="configs/generate.yaml", type=str)
    parser.add_argument("--output_path", default="analysis/", type=str)
    parser.add_argument("--ckpt", default="checkpoints/instruct-pix2pix-00-22000.ckpt", type=str)
    parser.add_argument("--dataset", default="data/clip-filtered-dataset/", type=str)
    parser.add_argument("--vae-ckpt", default=None, type=str)
    args = parser.parse_args()

    scales_img = [1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2]
    scales_txt = [7.5]
    
    metrics_file = compute_metrics(
            args.config,
            args.ckpt, 
            args.vae_ckpt,
            args.dataset, 
            args.output_path, 
            scales_img, 
            scales_txt
            steps = args.steps
            )
    
    plot_metrics(metrics_file, args.output_path)
        


if __name__ == "__main__":
    main()