Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ from nltk.tokenize import sent_tokenize
|
|
13 |
from IPython.display import Audio
|
14 |
import spaces
|
15 |
|
16 |
-
device =
|
17 |
|
18 |
api_key = os.getenv("OPENAI_API_KEY")
|
19 |
if not api_key:
|
@@ -27,7 +27,7 @@ yolo_model = YOLO("yolov8s.pt")
|
|
27 |
stable_diffusion = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
28 |
stable_diffusion.to(device)
|
29 |
nltk.download("punkt")
|
30 |
-
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=
|
31 |
|
32 |
@spaces.GPU
|
33 |
def detect_objects(image_path):
|
@@ -47,7 +47,7 @@ def generate_story(detected_objects):
|
|
47 |
messages=[{"role": "user", "content": story_prompt}],
|
48 |
max_tokens=200
|
49 |
)
|
50 |
-
return response.choices[0].message.content
|
51 |
|
52 |
def summarize_story(story):
|
53 |
summary = summarizer(story, max_length=100, do_sample=False)[0]['summary_text']
|
@@ -59,7 +59,7 @@ def generate_images(story):
|
|
59 |
prompts = [f"Highly detailed, cinematic scene: {scene}, digital art, 4K, realistic lighting" for scene in scenes]
|
60 |
images = []
|
61 |
for prompt in prompts:
|
62 |
-
image = stable_diffusion(prompt).images[0]
|
63 |
images.append(image)
|
64 |
return images
|
65 |
|
@@ -70,10 +70,12 @@ def text_to_speech(story):
|
|
70 |
return audio_file_path
|
71 |
|
72 |
def full_pipeline(image):
|
73 |
-
|
|
|
|
|
74 |
story = generate_story(detected_objects)
|
75 |
scenes = summarize_story(story)
|
76 |
-
images = generate_images(
|
77 |
audio = text_to_speech(story)
|
78 |
|
79 |
return story, scenes, images, audio
|
|
|
13 |
from IPython.display import Audio
|
14 |
import spaces
|
15 |
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
api_key = os.getenv("OPENAI_API_KEY")
|
19 |
if not api_key:
|
|
|
27 |
stable_diffusion = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
28 |
stable_diffusion.to(device)
|
29 |
nltk.download("punkt")
|
30 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device= 'cuda' if torch.cuda.is_available() else 'cpu')
|
31 |
|
32 |
@spaces.GPU
|
33 |
def detect_objects(image_path):
|
|
|
47 |
messages=[{"role": "user", "content": story_prompt}],
|
48 |
max_tokens=200
|
49 |
)
|
50 |
+
return response.choices[0].message.content.strip()
|
51 |
|
52 |
def summarize_story(story):
|
53 |
summary = summarizer(story, max_length=100, do_sample=False)[0]['summary_text']
|
|
|
59 |
prompts = [f"Highly detailed, cinematic scene: {scene}, digital art, 4K, realistic lighting" for scene in scenes]
|
60 |
images = []
|
61 |
for prompt in prompts:
|
62 |
+
image = stable_diffusion(prompt=prompt).images[0]
|
63 |
images.append(image)
|
64 |
return images
|
65 |
|
|
|
70 |
return audio_file_path
|
71 |
|
72 |
def full_pipeline(image):
|
73 |
+
image_path = "input.jpg"
|
74 |
+
image.save(image_path)
|
75 |
+
detected_objects = detect_objects(image_path)
|
76 |
story = generate_story(detected_objects)
|
77 |
scenes = summarize_story(story)
|
78 |
+
images = generate_images(story)
|
79 |
audio = text_to_speech(story)
|
80 |
|
81 |
return story, scenes, images, audio
|