File size: 16,346 Bytes
6551065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import os
import json
import torch
import torch.nn as nn
import lightning.pytorch as pl
from transformers import LlamaForCausalLM, LlamaTokenizer
from evalcap.bleu.bleu import Bleu
from evalcap.rouge.rouge import Rouge
from evalcap.cider.cider import Cider
from evalcap.meteor.meteor import Meteor
from transformers import SwinModel
from lightning_tools.optim import config_optimizer
from peft import get_peft_model, LoraConfig, TaskType
import pdb
class R2GenGPT(pl.LightningModule):
"""
R2GenGPT model.
"""
def __init__(self, args):
super().__init__()
self.args = args
self.save_hyperparameters(args)
print(f'Loading vision encoder:{args.vision_model}')
self.visual_encoder = SwinModel.from_pretrained(args.vision_model)
if args.vis_use_lora:
peft_config_visual = LoraConfig(
r=args.vis_r,
lora_alpha=args.vis_alpha,
target_modules=["query", "value"],
lora_dropout=args.lora_dropout,
bias="none",
modules_to_save=["classifier"],
)
self.visual_encoder = get_peft_model(self.visual_encoder, peft_config_visual)
self.visual_encoder.print_trainable_parameters()
print('Loading vision encoder with LoRA -- Done')
elif args.freeze_vm:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
print(f'Loading Frozen vision encoder:{args.vision_model} -- Done')
else:
print(f'Loading Trainable vision encoder:{args.vision_model} -- Done')
print('Loading LLAMA')
self.llama_tokenizer = LlamaTokenizer.from_pretrained(args.llama_model, use_fast=False)
self.llama_tokenizer.pad_token_id = 0
if args.low_resource:
self.llama_model = LlamaForCausalLM.from_pretrained(
args.llama_model,
torch_dtype=torch.float16,
load_in_8bit=True,
device_map="auto"
)
else:
self.llama_model = LlamaForCausalLM.from_pretrained(
args.llama_model,
torch_dtype=torch.float16,
)
if args.llm_use_lora:
self.embed_tokens = self.llama_model.get_input_embeddings()
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False, r=args.llm_r, lora_alpha=args.llm_alpha, lora_dropout=args.lora_dropout
)
self.llama_model = get_peft_model(self.llama_model, peft_config)
self.llama_model.print_trainable_parameters()
print('Loading LLAMA LoRA Done')
else:
self.embed_tokens = self.llama_model.get_input_embeddings()
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
print('Loading LLAMA Done')
self.llama_proj = nn.Linear(self.visual_encoder.num_features, self.llama_model.config.hidden_size)
self.layer_norm = nn.LayerNorm(self.llama_model.config.hidden_size)
self.end_sym = args.end_sym
self.prompt = 'Generate a comprehensive and detailed diagnosis report for this chest xray image.'
self.val_step_outputs = []
self.test_step_outputs = []
self.val_score = 0.0
if args.delta_file is not None:
state_dict = torch.load(args.delta_file, map_location=torch.device(f'cuda:{torch.cuda.current_device()}'))['model']
self.load_state_dict(state_dict=state_dict, strict=False)
print(f'Load checkpoint from {args.delta_file}')
def score(self, ref, hypo):
"""
ref, dictionary of reference sentences (id, sentence)
hypo, dictionary of hypothesis sentences (id, sentence)
score, dictionary of scores
"""
scorers = [
(Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
(Rouge(), "ROUGE_L"),
(Meteor(), "METEOR"),
(Cider(), "CIDEr")
]
final_scores = {}
for scorer, method in scorers:
score, scores = scorer.compute_score(ref, hypo)
if type(score) == list:
for m, s in zip(method, score):
final_scores[m] = s
else:
final_scores[method] = score
return final_scores
def encode_img(self, images):
image_embeds = []
for image in images:
device = image.device
if self.hparams.global_only:
image_embed = self.visual_encoder(image)['pooler_output'].unsqueeze(1).to(device)
else:
image_embed = self.visual_encoder(image)['last_hidden_state'].to(device)
image_embeds.append(image_embed)
image_embeds = torch.stack(image_embeds).mean(0)
inputs_llama = self.llama_proj(image_embeds)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
return inputs_llama, atts_llama
def prompt_wrap(self, img_embeds, atts_img):
prompt=f'Human: <Img><ImageHere></Img> {self.prompt} \nAssistant:'
batch_size = img_embeds.shape[0]
p_before, p_after = prompt.split('<ImageHere>')
p_before_tokens = self.llama_tokenizer(
p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_after_tokens = self.llama_tokenizer(
p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_before_embeds = self.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1)
p_after_embeds = self.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1)
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds, p_after_embeds], dim=1)
wrapped_atts_img = atts_img[:, :1].expand(-1, wrapped_img_embeds.shape[1])
return wrapped_img_embeds, wrapped_atts_img
def forward(self, samples):
image = samples["image"]
img_embeds, atts_img = self.encode_img(image)
img_embeds = self.layer_norm(img_embeds)
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img)
self.llama_tokenizer.padding_side = "right"
text = [t + self.end_sym for t in samples["input_text"]]
to_regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.hparams.max_length,
add_special_tokens=False
).to(image[0].device)
targets = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == 0, -100
)
empty_targets = (
torch.ones([atts_img.shape[0], atts_img.shape[1]+1],
dtype=torch.long).to(image[0].device).fill_(-100) # plus one for bos
)
targets = torch.cat([empty_targets, targets], dim=1)
batch_size = img_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.embed_tokens(bos)
atts_bos = atts_img[:, :1]
to_regress_embeds = self.embed_tokens(to_regress_tokens.input_ids)
inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds], dim=1)
attention_mask = torch.cat([atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
def training_step(self, batch, batch_idx):
result = self(batch)
self.log_dict(result, prog_bar=True)
return result
def save_checkpoint(self, eval_res):
current_epoch, global_step = self.trainer.current_epoch, self.trainer.global_step
param_grad_dic = {
k: v.requires_grad for (k, v) in self.named_parameters() if v.requires_grad
}
state_dict = self.state_dict()
for k in list(state_dict.keys()):
if k not in param_grad_dic.keys():
del state_dict[k]
save_obj = {
"model": state_dict,
"config": self.hparams,
"epoch": current_epoch,
"step":global_step
}
os.makedirs(os.path.join(self.hparams.savedmodel_path, 'checkpoints'), exist_ok=True)
save_to = os.path.join(
self.hparams.savedmodel_path, 'checkpoints',
"checkpoint_epoch{}_step{}_bleu{:3f}_cider{:3f}.pth".format(current_epoch, global_step, eval_res['Bleu_4'], eval_res['CIDEr']),
)
self.print("Saving checkpoint at step {} to {}.".format(global_step, save_to))
torch.save(save_obj, save_to)
def validation_step(self, samples, batch_idx):
self.llama_tokenizer.padding_side = "right"
to_regress_tokens = self.llama_tokenizer(
samples['input_text'],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.hparams.max_length,
add_special_tokens=False
)
image = samples["image"]
img_embeds, atts_img = self.encode_img(image)
img_embeds = self.layer_norm(img_embeds)
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img)
batch_size = img_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=atts_img.dtype,
device=atts_img.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.embed_tokens(bos)
atts_bos = atts_img[:, :1]
inputs_embeds = torch.cat([bos_embeds, img_embeds], dim=1)
attention_mask = torch.cat([atts_bos, atts_img], dim=1)
outputs = self.llama_model.generate(
inputs_embeds=inputs_embeds,
num_beams=self.hparams.beam_size,
do_sample=self.hparams.do_sample,
min_new_tokens=self.hparams.min_new_tokens,
max_new_tokens=self.hparams.max_new_tokens,
repetition_penalty=self.hparams.repetition_penalty,
length_penalty=self.hparams.length_penalty,
temperature=self.hparams.temperature,
)
hypo = [self.decode(i) for i in outputs]
ref = [self.decode(i) for i in to_regress_tokens['input_ids']]
self.val_step_outputs.append({"hypo": hypo, "ref": ref, "id": samples["id"]})
return hypo, ref
def decode(self, output_token):
if output_token[0] == 0: # the model might output a unknow token <unk> at the beginning. remove it
output_token = output_token[1:]
if output_token[0] == 1: # some users find that there is a start token <s> at the beginning. remove it
output_token = output_token[1:]
output_text = self.llama_tokenizer.decode(output_token, add_special_tokens=False)
output_text = output_text.split('</s>')[0].strip()
output_text = output_text.replace('<unk>', '')
return output_text
def on_validation_epoch_end(self):
ref, hypo, ids = [], [], []
for i in self.val_step_outputs:
ref.extend(i['ref'])
hypo.extend(i['hypo'])
ids.extend(i['id'])
ref = {k:[v] for k, v in zip(ids, ref)}
hypo = {k:[v] for k, v in zip(ids, hypo)}
eval_res = self.score(ref=ref,hypo=hypo)
self.log_dict(eval_res, sync_dist=True, logger=True)
result_folder = os.path.join(self.hparams.savedmodel_path, 'result')
os.makedirs(result_folder, exist_ok=True)
current_epoch, global_step = self.trainer.current_epoch, self.trainer.global_step
json.dump(hypo, open(os.path.join(result_folder, f"result_{current_epoch}_{global_step}" + '.json'), 'w'))
json.dump(ref, open(os.path.join(result_folder, 'refs.json'), 'w'))
self.print(eval_res)
val_score = 0
for score_type, weight in zip(self.hparams.scorer_types, self.hparams.weights):
val_score += eval_res[score_type] * weight
if self.trainer.local_rank == 0:
if val_score > self.val_score:
self.save_checkpoint(eval_res)
self.val_score = val_score
self.val_step_outputs.clear()
def test_step(self, samples, batch_idx):
self.llama_tokenizer.padding_side = "right"
to_regress_tokens = self.llama_tokenizer(
samples['input_text'],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.hparams.max_length,
add_special_tokens=False
)
image = samples["image"]
img_embeds, atts_img = self.encode_img(image)
img_embeds = self.layer_norm(img_embeds)
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img)
batch_size = img_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=atts_img.dtype,
device=atts_img.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.embed_tokens(bos)
atts_bos = atts_img[:, :1]
inputs_embeds = torch.cat([bos_embeds, img_embeds], dim=1)
attention_mask = torch.cat([atts_bos, atts_img], dim=1)
outputs = self.llama_model.generate(
inputs_embeds=inputs_embeds,
num_beams=self.hparams.beam_size,
do_sample=self.hparams.do_sample,
min_new_tokens=self.hparams.min_new_tokens,
max_new_tokens=self.hparams.max_new_tokens,
repetition_penalty=self.hparams.repetition_penalty,
length_penalty=self.hparams.length_penalty,
temperature=self.hparams.temperature,
)
hypo = [self.decode(i) for i in outputs]
ref = [self.decode(i) for i in to_regress_tokens['input_ids']]
self.test_step_outputs.append({"hypo": hypo, "ref": ref, "id": samples["id"]})
return hypo, ref
def on_test_epoch_end(self):
"""
This function is called at the end of the test epoch.
It is recommended to test on single device to ensure each sample/batch gets evaluated exactly once. This is helpful to make sure benchmarking for research papers is done the right way. Otherwise, in a multi-device setting, samples could occur duplicated when DistributedSampler is used, for eg. with strategy="ddp". It replicates some samples on some devices to make sure all devices have same batch size in case of uneven inputs.
"""
ref, hypo, ids = [], [], []
for i in self.test_step_outputs:
ref.extend(i['ref'])
hypo.extend(i['hypo'])
ids.extend(i['id'])
ref = {k:[v] for k, v in zip(ids, ref)}
hypo = {k:[v] for k, v in zip(ids, hypo)}
eval_res = self.score(ref=ref,hypo=hypo)
result_folder = os.path.join(self.hparams.savedmodel_path, 'result')
os.makedirs(result_folder, exist_ok=True)
json.dump(hypo, open(os.path.join(result_folder, f"test_result.json"), 'w'))
json.dump(ref, open(os.path.join(result_folder, 'test_refs.json'), 'w'))
self.print(f"Test result of {self.hparams.delta_file}: {eval_res}")
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.learning_rate)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=self.hparams.max_epochs, eta_min=1e-6)
return {"optimizer": optimizer, "lr_scheduler": scheduler}
def get_progress_bar_dict(self):
# don't show the version number
items = super().get_progress_bar_dict()
items.pop("v_num", None)
return items
def optimizer_zero_grad(self, epoch, batch_idx, optimizer):
optimizer.zero_grad() |