Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,136 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
-
import
|
4 |
-
from torchvision.models import resnet50
|
5 |
from PIL import Image
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pprint import pprint
|
3 |
+
from configs.config import parser
|
4 |
+
from dataset.data_module import DataModule
|
5 |
+
from models.R2GenGPT import R2GenGPT
|
6 |
import torch
|
7 |
+
from transformers import BertTokenizer, AutoImageProcessor
|
|
|
8 |
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
import streamlit as st
|
11 |
+
from lightning.pytorch import seed_everything
|
12 |
+
|
13 |
+
# Initialize the app
|
14 |
+
# st.title("Chest X-ray Report Generator")
|
15 |
+
|
16 |
+
# Function to load the model
|
17 |
+
def load_model(args):
|
18 |
+
model = R2GenGPT(args)
|
19 |
+
model.eval()
|
20 |
+
model.freeze()
|
21 |
+
return model
|
22 |
+
|
23 |
+
# Function to parse image
|
24 |
+
def _parse_image(vit_feature_extractor, img):
|
25 |
+
pixel_values = vit_feature_extractor(img, return_tensors="pt").pixel_values
|
26 |
+
return pixel_values[0]
|
27 |
+
|
28 |
+
# Function to generate predictions
|
29 |
+
def generate_predictions(image_path, vit_feature_extractor, model):
|
30 |
+
model.llama_tokenizer.padding_side = "right"
|
31 |
+
|
32 |
+
with Image.open(image_path) as pil:
|
33 |
+
array = np.array(pil, dtype=np.uint8)
|
34 |
+
if array.shape[-1] != 3 or len(array.shape) != 3:
|
35 |
+
array = np.array(pil.convert("RGB"), dtype=np.uint8)
|
36 |
+
image = _parse_image(vit_feature_extractor, array)
|
37 |
+
image = image.unsqueeze(0)
|
38 |
+
# image = image[None, :]
|
39 |
+
image = image.to(device='cuda:0')
|
40 |
+
|
41 |
+
print("Model Encoding for Image: ", model.encode_img(image))
|
42 |
+
try:
|
43 |
+
img_embeds, atts_img = model.encode_img(image)
|
44 |
+
print("Image embeddings in try blk", img_embeds)
|
45 |
+
|
46 |
+
print("Try block for Image Embeddings \n")
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
st.error(e)
|
50 |
+
print(st.error(e))
|
51 |
+
print("Except block for Image embeddings \n")
|
52 |
+
# return []
|
53 |
+
|
54 |
+
img_embeds = model.layer_norm(img_embeds)
|
55 |
+
img_embeds, atts_img = model.prompt_wrap(img_embeds, atts_img)
|
56 |
+
print("Image embeddings: ", img_embeds)
|
57 |
+
|
58 |
+
|
59 |
+
batch_size = img_embeds.shape[0]
|
60 |
+
print("Batch size printed: ", batch_size)
|
61 |
+
bos = torch.ones([batch_size, 1],
|
62 |
+
dtype=atts_img.dtype,
|
63 |
+
device=atts_img.device) * model.llama_tokenizer.bos_token_id
|
64 |
+
bos_embeds = model.embed_tokens(bos)
|
65 |
+
atts_bos = atts_img[:, :1]
|
66 |
+
print("Attention: ", atts_bos)
|
67 |
+
|
68 |
+
inputs_embeds = torch.cat([bos_embeds, img_embeds], dim=1)
|
69 |
+
print("Shape of Input emb", inputs_embeds)
|
70 |
+
inputs_embeds = inputs_embeds.type(torch.float16)
|
71 |
+
attention_mask = torch.cat([atts_bos, atts_img], dim=1)
|
72 |
+
print("Shape of Attention mask: ", attention_mask)
|
73 |
+
|
74 |
+
try:
|
75 |
+
with torch.no_grad():
|
76 |
+
outputs = model.llama_model.generate(inputs_embeds=inputs_embeds)
|
77 |
+
print("output", outputs)
|
78 |
+
except Exception as e:
|
79 |
+
st.error(e)
|
80 |
+
return []
|
81 |
+
|
82 |
+
hypo = [model.decode(i) for i in outputs]
|
83 |
+
print("Generated Report :", hypo)
|
84 |
+
return hypo
|
85 |
+
|
86 |
+
# Function to perform inference
|
87 |
+
def inference(args, uploaded_file):
|
88 |
+
model = load_model(args)
|
89 |
+
vit_feature_extractor = AutoImageProcessor.from_pretrained(args.vision_model)
|
90 |
|
91 |
+
with open("/workspace/p10_p10046166_s50051329_427446c1-881f5cce-85191ce1-91a58ba9-0a57d3f5.jpg", "wb") as f:
|
92 |
+
f.write(uploaded_file.getbuffer())
|
93 |
+
|
94 |
+
predictions = generate_predictions("/workspace/p10_p10046166_s50051329_427446c1-881f5cce-85191ce1-91a58ba9-0a57d3f5.jpg", vit_feature_extractor, model)
|
95 |
+
print("Predictions: ", predictions)
|
96 |
+
os.remove("/workspace/p10_p10046166_s50051329_427446c1-881f5cce-85191ce1-91a58ba9-0a57d3f5.jpg")
|
97 |
+
|
98 |
+
return predictions
|
99 |
+
|
100 |
+
# Main function
|
101 |
+
def main():
|
102 |
+
#parser = argparse.ArgumentParser()
|
103 |
+
# other arguments
|
104 |
+
#parser.add_argument('--file', type=open, action=LoadFromFile)
|
105 |
+
|
106 |
+
args = parser.parse_args()
|
107 |
+
pprint(vars(args))
|
108 |
+
seed_everything(42, workers=True)
|
109 |
+
|
110 |
+
# File uploader for image
|
111 |
+
model = load_model(args)
|
112 |
+
vit_feature_extractor = AutoImageProcessor.from_pretrained(args.vision_model)
|
113 |
+
predictions = generate_predictions("/workspace/p10_p10046166_s57379357_6e511483-c7e1601c-76890b2f-b0c6b55d-e53bcbf6.jpg", vit_feature_extractor, model)
|
114 |
+
print("Predictions: ", predictions)
|
115 |
+
|
116 |
+
print("Inference: ", inference(args, "/workspace/p10_p10046166_s57379357_6e511483-c7e1601c-76890b2f-b0c6b55d-e53bcbf6.jpg"))
|
117 |
+
#uploaded_file = st.file_uploader("Choose a chest X-ray image...", type="jpg")
|
118 |
+
|
119 |
+
#if uploaded_file is not None:
|
120 |
+
# st.image(uploaded_file, caption='Uploaded Image.', use_column_width=True)
|
121 |
+
# st.write("")
|
122 |
+
# st.write("Generating report...")
|
123 |
+
|
124 |
+
#predictions = inference(args, uploaded_file)
|
125 |
+
|
126 |
+
# if predictions:
|
127 |
+
# st.write("Generated Report:")
|
128 |
+
|
129 |
+
# for pred in predictions:
|
130 |
+
# print("Generated Report", pred)
|
131 |
+
# st.write(pred)
|
132 |
+
# else:
|
133 |
+
# st.write("Failed to generate report.")
|
134 |
+
|
135 |
+
if __name__ == '__main__':
|
136 |
+
main()
|