import os import json import torch import torch.nn as nn import lightning.pytorch as pl from transformers import LlamaForCausalLM, LlamaTokenizer from evalcap.bleu.bleu import Bleu from evalcap.rouge.rouge import Rouge from evalcap.cider.cider import Cider from evalcap.meteor.meteor import Meteor from transformers import SwinModel from lightning_tools.optim import config_optimizer from peft import get_peft_model, LoraConfig, TaskType import pdb class R2GenGPT(pl.LightningModule): """ R2GenGPT model. """ def __init__(self, args): super().__init__() self.args = args self.save_hyperparameters(args) print(f'Loading vision encoder:{args.vision_model}') self.visual_encoder = SwinModel.from_pretrained(args.vision_model) if args.vis_use_lora: peft_config_visual = LoraConfig( r=args.vis_r, lora_alpha=args.vis_alpha, target_modules=["query", "value"], lora_dropout=args.lora_dropout, bias="none", modules_to_save=["classifier"], ) self.visual_encoder = get_peft_model(self.visual_encoder, peft_config_visual) self.visual_encoder.print_trainable_parameters() print('Loading vision encoder with LoRA -- Done') elif args.freeze_vm: for name, param in self.visual_encoder.named_parameters(): param.requires_grad = False print(f'Loading Frozen vision encoder:{args.vision_model} -- Done') else: print(f'Loading Trainable vision encoder:{args.vision_model} -- Done') print('Loading LLAMA') self.llama_tokenizer = LlamaTokenizer.from_pretrained(args.llama_model, use_fast=False) self.llama_tokenizer.pad_token_id = 0 if args.low_resource: self.llama_model = LlamaForCausalLM.from_pretrained( args.llama_model, torch_dtype=torch.float16, load_in_8bit=True, device_map="auto" ) else: self.llama_model = LlamaForCausalLM.from_pretrained( args.llama_model, torch_dtype=torch.float16, ) if args.llm_use_lora: self.embed_tokens = self.llama_model.get_input_embeddings() peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=args.llm_r, lora_alpha=args.llm_alpha, lora_dropout=args.lora_dropout ) self.llama_model = get_peft_model(self.llama_model, peft_config) self.llama_model.print_trainable_parameters() print('Loading LLAMA LoRA Done') else: self.embed_tokens = self.llama_model.get_input_embeddings() for name, param in self.llama_model.named_parameters(): param.requires_grad = False print('Loading LLAMA Done') self.llama_proj = nn.Linear(self.visual_encoder.num_features, self.llama_model.config.hidden_size) self.layer_norm = nn.LayerNorm(self.llama_model.config.hidden_size) self.end_sym = args.end_sym self.prompt = 'Generate a comprehensive and detailed diagnosis report for this chest xray image.' self.val_step_outputs = [] self.test_step_outputs = [] self.val_score = 0.0 if args.delta_file is not None: state_dict = torch.load(args.delta_file, map_location=torch.device(f'cuda:{torch.cuda.current_device()}'))['model'] self.load_state_dict(state_dict=state_dict, strict=False) print(f'Load checkpoint from {args.delta_file}') def score(self, ref, hypo): """ ref, dictionary of reference sentences (id, sentence) hypo, dictionary of hypothesis sentences (id, sentence) score, dictionary of scores """ scorers = [ (Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]), (Rouge(), "ROUGE_L"), (Meteor(), "METEOR"), (Cider(), "CIDEr") ] final_scores = {} for scorer, method in scorers: score, scores = scorer.compute_score(ref, hypo) if type(score) == list: for m, s in zip(method, score): final_scores[m] = s else: final_scores[method] = score return final_scores def encode_img(self, images): image_embeds = [] for image in images: device = image.device if self.hparams.global_only: image_embed = self.visual_encoder(image)['pooler_output'].unsqueeze(1).to(device) else: image_embed = self.visual_encoder(image)['last_hidden_state'].to(device) image_embeds.append(image_embed) image_embeds = torch.stack(image_embeds).mean(0) inputs_llama = self.llama_proj(image_embeds) atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device) return inputs_llama, atts_llama def prompt_wrap(self, img_embeds, atts_img): prompt=f'Human: {self.prompt} \nAssistant:' batch_size = img_embeds.shape[0] p_before, p_after = prompt.split('') p_before_tokens = self.llama_tokenizer( p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) p_after_tokens = self.llama_tokenizer( p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) p_before_embeds = self.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) p_after_embeds = self.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds, p_after_embeds], dim=1) wrapped_atts_img = atts_img[:, :1].expand(-1, wrapped_img_embeds.shape[1]) return wrapped_img_embeds, wrapped_atts_img def forward(self, samples): image = samples["image"] img_embeds, atts_img = self.encode_img(image) img_embeds = self.layer_norm(img_embeds) img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img) self.llama_tokenizer.padding_side = "right" text = [t + self.end_sym for t in samples["input_text"]] to_regress_tokens = self.llama_tokenizer( text, return_tensors="pt", padding="max_length", truncation=True, max_length=self.hparams.max_length, add_special_tokens=False ).to(image[0].device) targets = to_regress_tokens.input_ids.masked_fill( to_regress_tokens.input_ids == 0, -100 ) empty_targets = ( torch.ones([atts_img.shape[0], atts_img.shape[1]+1], dtype=torch.long).to(image[0].device).fill_(-100) # plus one for bos ) targets = torch.cat([empty_targets, targets], dim=1) batch_size = img_embeds.shape[0] bos = torch.ones([batch_size, 1], dtype=to_regress_tokens.input_ids.dtype, device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id bos_embeds = self.embed_tokens(bos) atts_bos = atts_img[:, :1] to_regress_embeds = self.embed_tokens(to_regress_tokens.input_ids) inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds], dim=1) attention_mask = torch.cat([atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1) outputs = self.llama_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, return_dict=True, labels=targets, ) loss = outputs.loss return {"loss": loss} def training_step(self, batch, batch_idx): result = self(batch) self.log_dict(result, prog_bar=True) return result def save_checkpoint(self, eval_res): current_epoch, global_step = self.trainer.current_epoch, self.trainer.global_step param_grad_dic = { k: v.requires_grad for (k, v) in self.named_parameters() if v.requires_grad } state_dict = self.state_dict() for k in list(state_dict.keys()): if k not in param_grad_dic.keys(): del state_dict[k] save_obj = { "model": state_dict, "config": self.hparams, "epoch": current_epoch, "step":global_step } os.makedirs(os.path.join(self.hparams.savedmodel_path, 'checkpoints'), exist_ok=True) save_to = os.path.join( self.hparams.savedmodel_path, 'checkpoints', "checkpoint_epoch{}_step{}_bleu{:3f}_cider{:3f}.pth".format(current_epoch, global_step, eval_res['Bleu_4'], eval_res['CIDEr']), ) self.print("Saving checkpoint at step {} to {}.".format(global_step, save_to)) torch.save(save_obj, save_to) def validation_step(self, samples, batch_idx): self.llama_tokenizer.padding_side = "right" to_regress_tokens = self.llama_tokenizer( samples['input_text'], return_tensors="pt", padding="max_length", truncation=True, max_length=self.hparams.max_length, add_special_tokens=False ) image = samples["image"] img_embeds, atts_img = self.encode_img(image) img_embeds = self.layer_norm(img_embeds) img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img) batch_size = img_embeds.shape[0] bos = torch.ones([batch_size, 1], dtype=atts_img.dtype, device=atts_img.device) * self.llama_tokenizer.bos_token_id bos_embeds = self.embed_tokens(bos) atts_bos = atts_img[:, :1] inputs_embeds = torch.cat([bos_embeds, img_embeds], dim=1) attention_mask = torch.cat([atts_bos, atts_img], dim=1) outputs = self.llama_model.generate( inputs_embeds=inputs_embeds, num_beams=self.hparams.beam_size, do_sample=self.hparams.do_sample, min_new_tokens=self.hparams.min_new_tokens, max_new_tokens=self.hparams.max_new_tokens, repetition_penalty=self.hparams.repetition_penalty, length_penalty=self.hparams.length_penalty, temperature=self.hparams.temperature, ) hypo = [self.decode(i) for i in outputs] ref = [self.decode(i) for i in to_regress_tokens['input_ids']] self.val_step_outputs.append({"hypo": hypo, "ref": ref, "id": samples["id"]}) return hypo, ref def decode(self, output_token): if output_token[0] == 0: # the model might output a unknow token at the beginning. remove it output_token = output_token[1:] if output_token[0] == 1: # some users find that there is a start token at the beginning. remove it output_token = output_token[1:] output_text = self.llama_tokenizer.decode(output_token, add_special_tokens=False) output_text = output_text.split('')[0].strip() output_text = output_text.replace('', '') return output_text def on_validation_epoch_end(self): ref, hypo, ids = [], [], [] for i in self.val_step_outputs: ref.extend(i['ref']) hypo.extend(i['hypo']) ids.extend(i['id']) ref = {k:[v] for k, v in zip(ids, ref)} hypo = {k:[v] for k, v in zip(ids, hypo)} eval_res = self.score(ref=ref,hypo=hypo) self.log_dict(eval_res, sync_dist=True, logger=True) result_folder = os.path.join(self.hparams.savedmodel_path, 'result') os.makedirs(result_folder, exist_ok=True) current_epoch, global_step = self.trainer.current_epoch, self.trainer.global_step json.dump(hypo, open(os.path.join(result_folder, f"result_{current_epoch}_{global_step}" + '.json'), 'w')) json.dump(ref, open(os.path.join(result_folder, 'refs.json'), 'w')) self.print(eval_res) val_score = 0 for score_type, weight in zip(self.hparams.scorer_types, self.hparams.weights): val_score += eval_res[score_type] * weight if self.trainer.local_rank == 0: if val_score > self.val_score: self.save_checkpoint(eval_res) self.val_score = val_score self.val_step_outputs.clear() def test_step(self, samples, batch_idx): self.llama_tokenizer.padding_side = "right" to_regress_tokens = self.llama_tokenizer( samples['input_text'], return_tensors="pt", padding="max_length", truncation=True, max_length=self.hparams.max_length, add_special_tokens=False ) image = samples["image"] img_embeds, atts_img = self.encode_img(image) img_embeds = self.layer_norm(img_embeds) img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img) batch_size = img_embeds.shape[0] bos = torch.ones([batch_size, 1], dtype=atts_img.dtype, device=atts_img.device) * self.llama_tokenizer.bos_token_id bos_embeds = self.embed_tokens(bos) atts_bos = atts_img[:, :1] inputs_embeds = torch.cat([bos_embeds, img_embeds], dim=1) attention_mask = torch.cat([atts_bos, atts_img], dim=1) outputs = self.llama_model.generate( inputs_embeds=inputs_embeds, num_beams=self.hparams.beam_size, do_sample=self.hparams.do_sample, min_new_tokens=self.hparams.min_new_tokens, max_new_tokens=self.hparams.max_new_tokens, repetition_penalty=self.hparams.repetition_penalty, length_penalty=self.hparams.length_penalty, temperature=self.hparams.temperature, ) hypo = [self.decode(i) for i in outputs] ref = [self.decode(i) for i in to_regress_tokens['input_ids']] self.test_step_outputs.append({"hypo": hypo, "ref": ref, "id": samples["id"]}) return hypo, ref def on_test_epoch_end(self): """ This function is called at the end of the test epoch. It is recommended to test on single device to ensure each sample/batch gets evaluated exactly once. This is helpful to make sure benchmarking for research papers is done the right way. Otherwise, in a multi-device setting, samples could occur duplicated when DistributedSampler is used, for eg. with strategy="ddp". It replicates some samples on some devices to make sure all devices have same batch size in case of uneven inputs. """ ref, hypo, ids = [], [], [] for i in self.test_step_outputs: ref.extend(i['ref']) hypo.extend(i['hypo']) ids.extend(i['id']) ref = {k:[v] for k, v in zip(ids, ref)} hypo = {k:[v] for k, v in zip(ids, hypo)} eval_res = self.score(ref=ref,hypo=hypo) result_folder = os.path.join(self.hparams.savedmodel_path, 'result') os.makedirs(result_folder, exist_ok=True) json.dump(hypo, open(os.path.join(result_folder, f"test_result.json"), 'w')) json.dump(ref, open(os.path.join(result_folder, 'test_refs.json'), 'w')) self.print(f"Test result of {self.hparams.delta_file}: {eval_res}") def configure_optimizers(self): optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.learning_rate) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=self.hparams.max_epochs, eta_min=1e-6) return {"optimizer": optimizer, "lr_scheduler": scheduler} def get_progress_bar_dict(self): # don't show the version number items = super().get_progress_bar_dict() items.pop("v_num", None) return items def optimizer_zero_grad(self, epoch, batch_idx, optimizer): optimizer.zero_grad()