File size: 5,891 Bytes
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import asyncio
import json
import pdb
import pickle
from typing import Dict, List

import instructor
import logfire
import tiktoken
from anthropic import AsyncAnthropic
from dotenv import load_dotenv
from jinja2 import Template
from llama_index.core import Document
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import TextNode
from openai import AsyncOpenAI
from pydantic import BaseModel, Field
from tenacity import retry, stop_after_attempt, wait_exponential
from tqdm.asyncio import tqdm

load_dotenv(".env")

# logfire.configure()


def create_docs(input_file: str) -> List[Document]:
    with open(input_file, "r") as f:
        documents: list[Document] = []
        for line in f:
            data = json.loads(line)
            documents.append(
                Document(
                    doc_id=data["doc_id"],
                    text=data["content"],
                    metadata={  # type: ignore
                        "url": data["url"],
                        "title": data["name"],
                        "tokens": data["tokens"],
                        "retrieve_doc": data["retrieve_doc"],
                        "source": data["source"],
                    },
                    excluded_llm_metadata_keys=[
                        "title",
                        "tokens",
                        "retrieve_doc",
                        "source",
                    ],
                    excluded_embed_metadata_keys=[
                        "url",
                        "tokens",
                        "retrieve_doc",
                        "source",
                    ],
                )
            )
    return documents


class SituatedContext(BaseModel):
    title: str = Field(..., description="The title of the document.")
    context: str = Field(
        ..., description="The context to situate the chunk within the document."
    )


# client = AsyncInstructor(
#     client=AsyncAnthropic(),
#     create=patch(
#         create=AsyncAnthropic().beta.prompt_caching.messages.create,
#         mode=Mode.ANTHROPIC_TOOLS,
#     ),
#     mode=Mode.ANTHROPIC_TOOLS,
# )
aclient = AsyncOpenAI()
# logfire.instrument_openai(aclient)
client: instructor.AsyncInstructor = instructor.from_openai(aclient)


@retry(stop=stop_after_attempt(5), wait=wait_exponential(multiplier=1, min=4, max=10))
async def situate_context(doc: str, chunk: str) -> str:
    template = Template(
        """
<document>
{{ doc }}
</document>

Here is the chunk we want to situate within the whole document above:

<chunk>
{{ chunk }}
</chunk>

Please give a short succinct context to situate this chunk within the overall document for the purposes of improving search retrieval of the chunk.
Answer only with the succinct context and nothing else.
"""
    )

    content = template.render(doc=doc, chunk=chunk)

    response = await client.chat.completions.create(
        model="gpt-4o-mini",
        max_tokens=1000,
        temperature=0,
        messages=[
            {
                "role": "user",
                "content": content,
            }
        ],
        response_model=SituatedContext,
    )
    return response.context


async def process_chunk(node: TextNode, document_dict: dict) -> TextNode:
    doc_id: str = node.source_node.node_id  # type: ignore
    doc: Document = document_dict[doc_id]

    if doc.metadata["tokens"] > 120_000:
        # Tokenize the document text
        encoding = tiktoken.encoding_for_model("gpt-4o-mini")
        tokens = encoding.encode(doc.get_content())

        # Trim to 120,000 tokens
        trimmed_tokens = tokens[:120_000]

        # Decode back to text
        trimmed_text = encoding.decode(trimmed_tokens)

        # Update the document with trimmed text
        doc = Document(text=trimmed_text, metadata=doc.metadata)
        doc.metadata["tokens"] = 120_000

    context: str = await situate_context(doc.get_content(), node.text)
    node.text = f"{node.text}\n\n{context}"
    return node


async def process(
    documents: List[Document], semaphore_limit: int = 50
) -> List[TextNode]:

    # From the document, we create chunks
    pipeline = IngestionPipeline(
        transformations=[SentenceSplitter(chunk_size=800, chunk_overlap=0)]
    )
    all_nodes: list[TextNode] = pipeline.run(documents=documents, show_progress=True)
    print(f"Number of nodes: {len(all_nodes)}")

    document_dict: dict[str, Document] = {doc.doc_id: doc for doc in documents}

    semaphore = asyncio.Semaphore(semaphore_limit)

    async def process_with_semaphore(node):
        async with semaphore:
            result = await process_chunk(node, document_dict)
            await asyncio.sleep(0.1)
            return result

    tasks = [process_with_semaphore(node) for node in all_nodes]

    results: List[TextNode] = await tqdm.gather(*tasks, desc="Processing chunks")

    # pdb.set_trace()

    return results


async def main():
    documents: List[Document] = create_docs("data/all_sources_data.jsonl")
    enhanced_nodes: List[TextNode] = await process(documents)

    with open("data/all_sources_contextual_nodes.pkl", "wb") as f:
        pickle.dump(enhanced_nodes, f)

    # pipeline = IngestionPipeline(
    #     transformations=[SentenceSplitter(chunk_size=800, chunk_overlap=0)]
    # )
    # all_nodes: list[TextNode] = pipeline.run(documents=documents, show_progress=True)
    # print(all_nodes[7933])
    # pdb.set_trace()

    with open("data/all_sources_contextual_nodes.pkl", "rb") as f:
        enhanced_nodes: list[TextNode] = pickle.load(f)

    for i, node in enumerate(enhanced_nodes):
        print(f"Chunk {i + 1}:")
        print(f"Node: {node}")
        print(f"Text: {node.text}")
        # pdb.set_trace()
        break


if __name__ == "__main__":
    asyncio.run(main())