File size: 13,306 Bytes
5ddcfe5 292e4e7 5ddcfe5 292e4e7 5ddcfe5 518ace9 5ddcfe5 75ceb60 5ddcfe5 d96c047 75ceb60 d96c047 292e4e7 75ceb60 292e4e7 5ddcfe5 518ace9 5ddcfe5 75ceb60 5ddcfe5 75ceb60 5ddcfe5 75ceb60 5ddcfe5 75ceb60 5ddcfe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
"""
Markdown Document Processor for Documentation Sources
This script processes Markdown (.md) and MDX (.mdx) files from various documentation sources
(such as Hugging Face Transformers, PEFT, TRL, LlamaIndex, and OpenAI Cookbook) and converts
them into a standardized JSONL format for further processing or indexing.
Key features:
1. Configurable for multiple documentation sources
2. Extracts titles, generates URLs, and counts tokens for each document
3. Supports inclusion/exclusion of specific directories and root files
4. Removes copyright headers from content
5. Generates a unique ID for each document
6. Determines if a whole document should be retrieved based on token count
7. Handles special cases like openai-cookbook repo by adding .ipynb extensions
8. Processes multiple sources in a single run
Usage:
python process_md_files.py <source1> <source2> ...
Where <source1>, <source2>, etc. are one or more of the predefined sources in SOURCE_CONFIGS
(e.g., 'transformers', 'llama_index', 'openai_cookbooks').
The script processes all Markdown files in the specified input directories (and their subdirectories),
applies the configured filters, and saves the results in JSONL files. Each line in the output
files represents a single document with metadata and content.
To add or modify sources, update the SOURCE_CONFIGS dictionary at the top of the script.
"""
import argparse
import json
import logging
import os
import re
import uuid
from typing import Dict, List
import tiktoken
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration for different sources
SOURCE_CONFIGS = {
"transformers": {
"base_url": "https://huggingface.co/docs/transformers/",
"input_directory": "data/transformers_md_files",
"output_file": "data/transformers_data.jsonl",
"source_name": "transformers",
"use_include_list": False,
"included_dirs": [],
"excluded_dirs": ["internal", "main_classes"],
"excluded_root_files": [],
"included_root_files": [],
"url_extension": "",
},
"peft": {
"base_url": "https://huggingface.co/docs/peft/",
"input_directory": "data/peft_md_files",
"output_file": "data/peft_data.jsonl",
"source_name": "peft",
"use_include_list": False,
"included_dirs": [],
"excluded_dirs": [],
"excluded_root_files": [],
"included_root_files": [],
"url_extension": "",
},
"trl": {
"base_url": "https://huggingface.co/docs/trl/",
"input_directory": "data/trl_md_files",
"output_file": "data/trl_data.jsonl",
"source_name": "trl",
"use_include_list": False,
"included_dirs": [],
"excluded_dirs": [],
"excluded_root_files": [],
"included_root_files": [],
"url_extension": "",
},
"llama_index": {
"base_url": "https://docs.llamaindex.ai/en/stable/",
"input_directory": "data/llama_index_md_files",
"output_file": "data/llama_index_data.jsonl",
"source_name": "llama_index",
"use_include_list": True,
"included_dirs": [
"getting_started",
"understanding",
"use_cases",
"examples",
"module_guides",
"optimizing",
],
"excluded_dirs": [],
"excluded_root_files": [],
"included_root_files": ["index.md"],
"url_extension": "",
},
"openai_cookbooks": {
"base_url": "https://github.com/openai/openai-cookbook/blob/main/examples/",
"input_directory": "data/openai-cookbook_md_files",
"output_file": "data/openai_cookbooks_data.jsonl",
"source_name": "openai_cookbooks",
"use_include_list": False,
"included_dirs": [],
"excluded_dirs": [],
"excluded_root_files": [],
"included_root_files": [],
"url_extension": ".ipynb",
},
"langchain": {
"base_url": "https://python.langchain.com/docs/",
"input_directory": "data/langchain_md_files",
"output_file": "data/langchain_data.jsonl",
"source_name": "langchain",
"use_include_list": True,
"included_dirs": ["how_to", "versions", "turorials", "integrations"],
"excluded_dirs": [],
"excluded_root_files": [],
"included_root_files": ["security.md", "concepts.mdx", "introduction.mdx"],
"url_extension": "",
},
"tai_blog": {
"base_url": "",
"input_directory": "",
"output_file": "data/tai_blog_data.jsonl",
"source_name": "tai_blog",
"use_include_list": False,
"included_dirs": [],
"excluded_dirs": [],
"excluded_root_files": [],
"included_root_files": [],
"url_extension": "",
},
"8-hour_primer": {
"base_url": "",
"input_directory": "data/8-hour_primer", # Path to the directory that contains the Markdown files
"output_file": "data/8-hour_primer_data.jsonl", # 8-hour Generative AI Primer
"source_name": "8-hour_primer",
"use_include_list": False,
"included_dirs": [],
"excluded_dirs": [],
"excluded_root_files": [],
"included_root_files": [],
"url_extension": "",
},
"llm_developer": {
"base_url": "",
"input_directory": "data/llm_developer", # Path to the directory that contains the Markdown files
"output_file": "data/llm_developer_data.jsonl", # From Beginner to Advanced LLM Developer
"source_name": "llm_developer",
"use_include_list": False,
"included_dirs": [],
"excluded_dirs": [],
"excluded_root_files": [],
"included_root_files": [],
"url_extension": "",
},
"python_primer": {
"base_url": "",
"input_directory": "data/python_primer", # Path to the directory that contains the Markdown files
"output_file": "data/python_primer_data.jsonl", # From Beginner to Advanced LLM Developer
"source_name": "python_primer",
"use_include_list": False,
"included_dirs": [],
"excluded_dirs": [],
"excluded_root_files": [],
"included_root_files": [],
"url_extension": "",
},
}
def extract_title(content: str):
title_match = re.search(r"^#\s+(.+)$", content, re.MULTILINE)
if title_match:
return title_match.group(1).strip()
lines = content.split("\n")
for line in lines:
if line.strip():
return line.strip()
return None
def generate_url(file_path: str, config: Dict) -> str:
"""
Return an empty string if base_url is empty;
otherwise return the constructed URL as before.
"""
if not config["base_url"]:
return ""
path_without_extension = os.path.splitext(file_path)[0]
path_with_forward_slashes = path_without_extension.replace("\\", "/")
return config["base_url"] + path_with_forward_slashes + config["url_extension"]
def should_include_file(file_path: str, config: Dict) -> bool:
if os.path.dirname(file_path) == "":
if config["use_include_list"]:
return os.path.basename(file_path) in config["included_root_files"]
else:
return os.path.basename(file_path) not in config["excluded_root_files"]
if config["use_include_list"]:
return any(file_path.startswith(dir) for dir in config["included_dirs"])
else:
return not any(file_path.startswith(dir) for dir in config["excluded_dirs"])
def num_tokens_from_string(string: str, encoding_name: str) -> int:
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string, disallowed_special=()))
return num_tokens
def remove_copyright_header(content: str) -> str:
header_pattern = re.compile(r"<!--Copyright.*?-->\s*", re.DOTALL)
cleaned_content = header_pattern.sub("", content, count=1)
return cleaned_content.strip()
def process_md_files(directory: str, config: Dict) -> List[Dict]:
jsonl_data = []
for root, _, files in os.walk(directory):
for file in files:
if file.endswith(".md") or file.endswith(".mdx"):
file_path = os.path.join(root, file)
relative_path = os.path.relpath(file_path, directory)
if should_include_file(relative_path, config):
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
title = extract_title(content)
token_count = num_tokens_from_string(content, "cl100k_base")
# Skip very small or extremely large files
if token_count < 100 or token_count > 200_000:
logger.info(
f"Skipping {relative_path} due to token count {token_count}"
)
continue
cleaned_content = remove_copyright_header(content)
json_object = {
"tokens": token_count,
"doc_id": str(uuid.uuid4()),
"name": (title if title else file),
"url": generate_url(relative_path, config),
"retrieve_doc": (token_count <= 8000),
"source": config["source_name"],
"content": cleaned_content,
}
jsonl_data.append(json_object)
return jsonl_data
def save_jsonl(data: List[Dict], output_file: str) -> None:
with open(output_file, "w", encoding="utf-8") as f:
for item in data:
json.dump(item, f, ensure_ascii=False)
f.write("\n")
def combine_all_sources(sources: List[str]) -> None:
"""
Combine JSONL files from multiple sources, preserving existing sources not being processed.
For example, if sources = ['transformers'], this will:
1. Load data from transformers_data.jsonl
2. Load data from all other source JSONL files that exist (course files, etc.)
3. Combine them all into all_sources_data.jsonl
"""
all_data = []
output_file = "data/all_sources_data.jsonl"
# Track which sources we're processing
processed_sources = set()
# First, add data from sources we're explicitly processing
for source in sources:
if source not in SOURCE_CONFIGS:
logger.error(f"Unknown source '{source}'. Skipping.")
continue
processed_sources.add(source)
input_file = SOURCE_CONFIGS[source]["output_file"]
logger.info(f"Processing updated source: {source} from {input_file}")
try:
source_data = []
with open(input_file, "r", encoding="utf-8") as f:
for line in f:
source_data.append(json.loads(line))
logger.info(f"Added {len(source_data)} documents from {source}")
all_data.extend(source_data)
except Exception as e:
logger.error(f"Error loading {input_file}: {e}")
# Now add data from all other sources not being processed
for source_name, config in SOURCE_CONFIGS.items():
# Skip sources we already processed
if source_name in processed_sources:
continue
# Try to load the individual source file
source_file = config["output_file"]
if os.path.exists(source_file):
logger.info(f"Preserving existing source: {source_name} from {source_file}")
try:
source_data = []
with open(source_file, "r", encoding="utf-8") as f:
for line in f:
source_data.append(json.loads(line))
logger.info(f"Preserved {len(source_data)} documents from {source_name}")
all_data.extend(source_data)
except Exception as e:
logger.error(f"Error loading {source_file}: {e}")
logger.info(f"Total documents combined: {len(all_data)}")
save_jsonl(all_data, output_file)
logger.info(f"Combined data saved to {output_file}")
def process_source(source: str) -> None:
if source not in SOURCE_CONFIGS:
logger.error(f"Unknown source '{source}'. Skipping.")
return
config = SOURCE_CONFIGS[source]
logger.info(f"\n\nProcessing source: {source}")
jsonl_data = process_md_files(config["input_directory"], config)
save_jsonl(jsonl_data, config["output_file"])
logger.info(
f"Processed {len(jsonl_data)} files and saved to {config['output_file']}"
)
def main(sources: List[str]) -> None:
for source in sources:
process_source(source)
if len(sources) > 1:
combine_all_sources(sources)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Process Markdown files from specified sources."
)
parser.add_argument(
"sources",
nargs="+",
choices=SOURCE_CONFIGS.keys(),
help="Specify one or more sources to process",
)
args = parser.parse_args()
main(args.sources)
|