File size: 13,306 Bytes
5ddcfe5
 
 
 
292e4e7
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292e4e7
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518ace9
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75ceb60
5ddcfe5
 
 
 
 
 
 
 
 
d96c047
 
75ceb60
d96c047
 
 
 
 
 
 
 
 
292e4e7
 
75ceb60
292e4e7
 
 
 
 
 
 
 
 
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518ace9
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75ceb60
 
 
 
 
 
 
 
5ddcfe5
 
75ceb60
 
 
 
 
5ddcfe5
 
 
 
75ceb60
 
5ddcfe5
75ceb60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ddcfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
"""
Markdown Document Processor for Documentation Sources

This script processes Markdown (.md) and MDX (.mdx) files from various documentation sources
(such as Hugging Face Transformers, PEFT, TRL, LlamaIndex, and OpenAI Cookbook) and converts
them into a standardized JSONL format for further processing or indexing.

Key features:
1. Configurable for multiple documentation sources
2. Extracts titles, generates URLs, and counts tokens for each document
3. Supports inclusion/exclusion of specific directories and root files
4. Removes copyright headers from content
5. Generates a unique ID for each document
6. Determines if a whole document should be retrieved based on token count
7. Handles special cases like openai-cookbook repo by adding .ipynb extensions
8. Processes multiple sources in a single run

Usage:
    python process_md_files.py <source1> <source2> ...

Where <source1>, <source2>, etc. are one or more of the predefined sources in SOURCE_CONFIGS
(e.g., 'transformers', 'llama_index', 'openai_cookbooks').

The script processes all Markdown files in the specified input directories (and their subdirectories),
applies the configured filters, and saves the results in JSONL files. Each line in the output
files represents a single document with metadata and content.

To add or modify sources, update the SOURCE_CONFIGS dictionary at the top of the script.
"""

import argparse
import json
import logging
import os
import re
import uuid
from typing import Dict, List

import tiktoken

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configuration for different sources
SOURCE_CONFIGS = {
    "transformers": {
        "base_url": "https://huggingface.co/docs/transformers/",
        "input_directory": "data/transformers_md_files",
        "output_file": "data/transformers_data.jsonl",
        "source_name": "transformers",
        "use_include_list": False,
        "included_dirs": [],
        "excluded_dirs": ["internal", "main_classes"],
        "excluded_root_files": [],
        "included_root_files": [],
        "url_extension": "",
    },
    "peft": {
        "base_url": "https://huggingface.co/docs/peft/",
        "input_directory": "data/peft_md_files",
        "output_file": "data/peft_data.jsonl",
        "source_name": "peft",
        "use_include_list": False,
        "included_dirs": [],
        "excluded_dirs": [],
        "excluded_root_files": [],
        "included_root_files": [],
        "url_extension": "",
    },
    "trl": {
        "base_url": "https://huggingface.co/docs/trl/",
        "input_directory": "data/trl_md_files",
        "output_file": "data/trl_data.jsonl",
        "source_name": "trl",
        "use_include_list": False,
        "included_dirs": [],
        "excluded_dirs": [],
        "excluded_root_files": [],
        "included_root_files": [],
        "url_extension": "",
    },
    "llama_index": {
        "base_url": "https://docs.llamaindex.ai/en/stable/",
        "input_directory": "data/llama_index_md_files",
        "output_file": "data/llama_index_data.jsonl",
        "source_name": "llama_index",
        "use_include_list": True,
        "included_dirs": [
            "getting_started",
            "understanding",
            "use_cases",
            "examples",
            "module_guides",
            "optimizing",
        ],
        "excluded_dirs": [],
        "excluded_root_files": [],
        "included_root_files": ["index.md"],
        "url_extension": "",
    },
    "openai_cookbooks": {
        "base_url": "https://github.com/openai/openai-cookbook/blob/main/examples/",
        "input_directory": "data/openai-cookbook_md_files",
        "output_file": "data/openai_cookbooks_data.jsonl",
        "source_name": "openai_cookbooks",
        "use_include_list": False,
        "included_dirs": [],
        "excluded_dirs": [],
        "excluded_root_files": [],
        "included_root_files": [],
        "url_extension": ".ipynb",
    },
    "langchain": {
        "base_url": "https://python.langchain.com/docs/",
        "input_directory": "data/langchain_md_files",
        "output_file": "data/langchain_data.jsonl",
        "source_name": "langchain",
        "use_include_list": True,
        "included_dirs": ["how_to", "versions", "turorials", "integrations"],
        "excluded_dirs": [],
        "excluded_root_files": [],
        "included_root_files": ["security.md", "concepts.mdx", "introduction.mdx"],
        "url_extension": "",
    },
    "tai_blog": {
        "base_url": "",
        "input_directory": "",
        "output_file": "data/tai_blog_data.jsonl",
        "source_name": "tai_blog",
        "use_include_list": False,
        "included_dirs": [],
        "excluded_dirs": [],
        "excluded_root_files": [],
        "included_root_files": [],
        "url_extension": "",
    },
    "8-hour_primer": {
        "base_url": "",
        "input_directory": "data/8-hour_primer",  # Path to the directory that contains the Markdown files
        "output_file": "data/8-hour_primer_data.jsonl",  # 8-hour Generative AI Primer
        "source_name": "8-hour_primer",
        "use_include_list": False,
        "included_dirs": [],
        "excluded_dirs": [],
        "excluded_root_files": [],
        "included_root_files": [],
        "url_extension": "",
    },
    "llm_developer": {
        "base_url": "",
        "input_directory": "data/llm_developer",  # Path to the directory that contains the Markdown files
        "output_file": "data/llm_developer_data.jsonl",  # From Beginner to Advanced LLM Developer
        "source_name": "llm_developer",
        "use_include_list": False,
        "included_dirs": [],
        "excluded_dirs": [],
        "excluded_root_files": [],
        "included_root_files": [],
        "url_extension": "",
    },
    "python_primer": {
        "base_url": "",
        "input_directory": "data/python_primer",  # Path to the directory that contains the Markdown files
        "output_file": "data/python_primer_data.jsonl",  # From Beginner to Advanced LLM Developer
        "source_name": "python_primer",
        "use_include_list": False,
        "included_dirs": [],
        "excluded_dirs": [],
        "excluded_root_files": [],
        "included_root_files": [],
        "url_extension": "",
    },
}


def extract_title(content: str):
    title_match = re.search(r"^#\s+(.+)$", content, re.MULTILINE)
    if title_match:
        return title_match.group(1).strip()

    lines = content.split("\n")
    for line in lines:
        if line.strip():
            return line.strip()

    return None


def generate_url(file_path: str, config: Dict) -> str:
    """
    Return an empty string if base_url is empty;
    otherwise return the constructed URL as before.
    """
    if not config["base_url"]:
        return ""

    path_without_extension = os.path.splitext(file_path)[0]
    path_with_forward_slashes = path_without_extension.replace("\\", "/")
    return config["base_url"] + path_with_forward_slashes + config["url_extension"]


def should_include_file(file_path: str, config: Dict) -> bool:
    if os.path.dirname(file_path) == "":
        if config["use_include_list"]:
            return os.path.basename(file_path) in config["included_root_files"]
        else:
            return os.path.basename(file_path) not in config["excluded_root_files"]

    if config["use_include_list"]:
        return any(file_path.startswith(dir) for dir in config["included_dirs"])
    else:
        return not any(file_path.startswith(dir) for dir in config["excluded_dirs"])


def num_tokens_from_string(string: str, encoding_name: str) -> int:
    encoding = tiktoken.get_encoding(encoding_name)
    num_tokens = len(encoding.encode(string, disallowed_special=()))
    return num_tokens


def remove_copyright_header(content: str) -> str:
    header_pattern = re.compile(r"<!--Copyright.*?-->\s*", re.DOTALL)
    cleaned_content = header_pattern.sub("", content, count=1)
    return cleaned_content.strip()


def process_md_files(directory: str, config: Dict) -> List[Dict]:
    jsonl_data = []

    for root, _, files in os.walk(directory):
        for file in files:
            if file.endswith(".md") or file.endswith(".mdx"):
                file_path = os.path.join(root, file)
                relative_path = os.path.relpath(file_path, directory)

                if should_include_file(relative_path, config):
                    with open(file_path, "r", encoding="utf-8") as f:
                        content = f.read()

                    title = extract_title(content)
                    token_count = num_tokens_from_string(content, "cl100k_base")

                    # Skip very small or extremely large files
                    if token_count < 100 or token_count > 200_000:
                        logger.info(
                            f"Skipping {relative_path} due to token count {token_count}"
                        )
                        continue

                    cleaned_content = remove_copyright_header(content)

                    json_object = {
                        "tokens": token_count,
                        "doc_id": str(uuid.uuid4()),
                        "name": (title if title else file),
                        "url": generate_url(relative_path, config),
                        "retrieve_doc": (token_count <= 8000),
                        "source": config["source_name"],
                        "content": cleaned_content,
                    }

                    jsonl_data.append(json_object)

    return jsonl_data


def save_jsonl(data: List[Dict], output_file: str) -> None:
    with open(output_file, "w", encoding="utf-8") as f:
        for item in data:
            json.dump(item, f, ensure_ascii=False)
            f.write("\n")


def combine_all_sources(sources: List[str]) -> None:
    """
    Combine JSONL files from multiple sources, preserving existing sources not being processed.
    
    For example, if sources = ['transformers'], this will:
    1. Load data from transformers_data.jsonl
    2. Load data from all other source JSONL files that exist (course files, etc.)
    3. Combine them all into all_sources_data.jsonl
    """
    all_data = []
    output_file = "data/all_sources_data.jsonl"
    
    # Track which sources we're processing
    processed_sources = set()
    
    # First, add data from sources we're explicitly processing
    for source in sources:
        if source not in SOURCE_CONFIGS:
            logger.error(f"Unknown source '{source}'. Skipping.")
            continue
            
        processed_sources.add(source)
        input_file = SOURCE_CONFIGS[source]["output_file"]
        logger.info(f"Processing updated source: {source} from {input_file}")
        
        try:
            source_data = []
            with open(input_file, "r", encoding="utf-8") as f:
                for line in f:
                    source_data.append(json.loads(line))
            
            logger.info(f"Added {len(source_data)} documents from {source}")
            all_data.extend(source_data)
        except Exception as e:
            logger.error(f"Error loading {input_file}: {e}")
    
    # Now add data from all other sources not being processed
    for source_name, config in SOURCE_CONFIGS.items():
        # Skip sources we already processed
        if source_name in processed_sources:
            continue
            
        # Try to load the individual source file
        source_file = config["output_file"]
        if os.path.exists(source_file):
            logger.info(f"Preserving existing source: {source_name} from {source_file}")
            try:
                source_data = []
                with open(source_file, "r", encoding="utf-8") as f:
                    for line in f:
                        source_data.append(json.loads(line))
                
                logger.info(f"Preserved {len(source_data)} documents from {source_name}")
                all_data.extend(source_data)
            except Exception as e:
                logger.error(f"Error loading {source_file}: {e}")
    
    logger.info(f"Total documents combined: {len(all_data)}")
    save_jsonl(all_data, output_file)
    logger.info(f"Combined data saved to {output_file}")


def process_source(source: str) -> None:
    if source not in SOURCE_CONFIGS:
        logger.error(f"Unknown source '{source}'. Skipping.")
        return

    config = SOURCE_CONFIGS[source]
    logger.info(f"\n\nProcessing source: {source}")
    jsonl_data = process_md_files(config["input_directory"], config)
    save_jsonl(jsonl_data, config["output_file"])
    logger.info(
        f"Processed {len(jsonl_data)} files and saved to {config['output_file']}"
    )


def main(sources: List[str]) -> None:
    for source in sources:
        process_source(source)

    if len(sources) > 1:
        combine_all_sources(sources)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Process Markdown files from specified sources."
    )
    parser.add_argument(
        "sources",
        nargs="+",
        choices=SOURCE_CONFIGS.keys(),
        help="Specify one or more sources to process",
    )
    args = parser.parse_args()

    main(args.sources)