File size: 14,254 Bytes
4ecfe75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
#!/usr/bin/env python
"""
AI Tutor App - Documentation Update Workflow
This script automates the process of updating documentation from GitHub repositories:
1. Download documentation from GitHub using the API
2. Process markdown files to create JSONL data
3. Add contextual information to document nodes
4. Create vector stores
5. Upload databases to HuggingFace
This workflow is specific to updating library documentation (Transformers, PEFT, LlamaIndex, etc.).
For adding courses, use the add_course_workflow.py script instead.
Usage:
python update_docs_workflow.py --sources [SOURCE1] [SOURCE2] ...
Additional flags to run specific steps (if you want to restart from a specific point):
--skip-download Skip the GitHub download step
--skip-process Skip the markdown processing step
--new-context-only Only process new content when adding context
--skip-context Skip the context addition step entirely
--skip-vectors Skip vector store creation
--skip-upload Skip uploading to HuggingFace
"""
import argparse
import json
import logging
import os
import pickle
import subprocess
import sys
from typing import Dict, List, Set
from dotenv import load_dotenv
from huggingface_hub import HfApi, hf_hub_download
# Load environment variables from .env file
load_dotenv()
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def ensure_required_files_exist():
"""Download required data files from HuggingFace if they don't exist locally."""
# List of files to check and download
required_files = {
# Critical files
"data/all_sources_data.jsonl": "all_sources_data.jsonl",
"data/all_sources_contextual_nodes.pkl": "all_sources_contextual_nodes.pkl",
# Documentation source files
"data/transformers_data.jsonl": "transformers_data.jsonl",
"data/peft_data.jsonl": "peft_data.jsonl",
"data/trl_data.jsonl": "trl_data.jsonl",
"data/llama_index_data.jsonl": "llama_index_data.jsonl",
"data/langchain_data.jsonl": "langchain_data.jsonl",
"data/openai_cookbooks_data.jsonl": "openai_cookbooks_data.jsonl",
# Course files
"data/tai_blog_data.jsonl": "tai_blog_data.jsonl",
"data/8-hour_primer_data.jsonl": "8-hour_primer_data.jsonl",
"data/llm_developer_data.jsonl": "llm_developer_data.jsonl",
"data/python_primer_data.jsonl": "python_primer_data.jsonl",
}
# Critical files that must be downloaded
critical_files = [
"data/all_sources_data.jsonl",
"data/all_sources_contextual_nodes.pkl",
]
# Check and download each file
for local_path, remote_filename in required_files.items():
if not os.path.exists(local_path):
logger.info(
f"{remote_filename} not found. Attempting to download from HuggingFace..."
)
try:
hf_hub_download(
token=os.getenv("HF_TOKEN"),
repo_id="towardsai-tutors/ai-tutor-data",
filename=remote_filename,
repo_type="dataset",
local_dir="data",
)
logger.info(
f"Successfully downloaded {remote_filename} from HuggingFace"
)
except Exception as e:
logger.warning(f"Could not download {remote_filename}: {e}")
# Only create empty file for all_sources_data.jsonl if it's missing
if local_path == "data/all_sources_data.jsonl":
logger.warning(
"Creating a new all_sources_data.jsonl file. This will not include previously existing data."
)
with open(local_path, "w") as f:
pass
# If critical file is missing, print a more serious warning
if local_path in critical_files:
logger.warning(
f"Critical file {remote_filename} is missing. The workflow may not function correctly."
)
if local_path == "data/all_sources_contextual_nodes.pkl":
logger.warning(
"The context addition step will process all documents since no existing contexts were found."
)
# Documentation sources that can be updated via GitHub API
GITHUB_SOURCES = [
"transformers",
"peft",
"trl",
"llama_index",
"openai_cookbooks",
"langchain",
]
def load_jsonl(file_path: str) -> List[Dict]:
"""Load data from a JSONL file."""
data = []
with open(file_path, "r", encoding="utf-8") as f:
for line in f:
data.append(json.loads(line))
return data
def save_jsonl(data: List[Dict], file_path: str) -> None:
"""Save data to a JSONL file."""
with open(file_path, "w", encoding="utf-8") as f:
for item in data:
json.dump(item, f, ensure_ascii=False)
f.write("\n")
def download_from_github(sources: List[str]) -> None:
"""Download documentation from GitHub repositories."""
logger.info(f"Downloading documentation from GitHub for sources: {sources}")
for source in sources:
if source not in GITHUB_SOURCES:
logger.warning(f"Source {source} is not a GitHub source, skipping download")
continue
logger.info(f"Downloading {source} documentation")
cmd = ["python", "data/scraping_scripts/github_to_markdown_ai_docs.py", source]
result = subprocess.run(cmd)
if result.returncode != 0:
logger.error(
f"Error downloading {source} documentation - check output above"
)
# Continue with other sources instead of exiting
continue
logger.info(f"Successfully downloaded {source} documentation")
def process_markdown_files(sources: List[str]) -> None:
"""Process markdown files for specific sources."""
logger.info(f"Processing markdown files for sources: {sources}")
cmd = ["python", "data/scraping_scripts/process_md_files.py"] + sources
result = subprocess.run(cmd)
if result.returncode != 0:
logger.error(f"Error processing markdown files - check output above")
sys.exit(1)
logger.info(f"Successfully processed markdown files")
def get_processed_doc_ids() -> Set[str]:
"""Get set of doc_ids that have already been processed with context."""
if not os.path.exists("data/all_sources_contextual_nodes.pkl"):
return set()
try:
with open("data/all_sources_contextual_nodes.pkl", "rb") as f:
nodes = pickle.load(f)
return {node.source_node.node_id for node in nodes}
except Exception as e:
logger.error(f"Error loading processed doc_ids: {e}")
return set()
def add_context_to_nodes(new_only: bool = False) -> None:
"""Add context to document nodes, optionally processing only new content."""
logger.info("Adding context to document nodes")
if new_only:
# Load all documents
all_docs = load_jsonl("data/all_sources_data.jsonl")
processed_ids = get_processed_doc_ids()
# Filter for unprocessed documents
new_docs = [doc for doc in all_docs if doc["doc_id"] not in processed_ids]
if not new_docs:
logger.info("No new documents to process")
return
# Save temporary JSONL with only new documents
temp_file = "data/new_docs_temp.jsonl"
save_jsonl(new_docs, temp_file)
# Temporarily modify the add_context_to_nodes.py script to use the temp file
cmd = [
"python",
"-c",
f"""
import asyncio
import os
import pickle
import json
from data.scraping_scripts.add_context_to_nodes import create_docs, process
async def main():
# First, get the list of sources being updated from the temp file
updated_sources = set()
with open("{temp_file}", "r") as f:
for line in f:
data = json.loads(line)
updated_sources.add(data["source"])
print(f"Updating nodes for sources: {{updated_sources}}")
# Process new documents
documents = create_docs("{temp_file}")
enhanced_nodes = await process(documents)
print(f"Generated context for {{len(enhanced_nodes)}} new nodes")
# Load existing nodes if they exist
existing_nodes = []
if os.path.exists("data/all_sources_contextual_nodes.pkl"):
with open("data/all_sources_contextual_nodes.pkl", "rb") as f:
existing_nodes = pickle.load(f)
# Filter out existing nodes for sources we're updating
filtered_nodes = []
removed_count = 0
for node in existing_nodes:
# Try to extract source from node metadata
try:
source = None
if hasattr(node, 'source_node') and hasattr(node.source_node, 'metadata'):
source = node.source_node.metadata.get("source")
elif hasattr(node, 'metadata'):
source = node.metadata.get("source")
if source not in updated_sources:
filtered_nodes.append(node)
else:
removed_count += 1
except Exception:
# Keep nodes where we can't determine the source
filtered_nodes.append(node)
print(f"Removed {{removed_count}} existing nodes for updated sources")
existing_nodes = filtered_nodes
# Combine filtered existing nodes with new nodes
all_nodes = existing_nodes + enhanced_nodes
# Save all nodes
with open("data/all_sources_contextual_nodes.pkl", "wb") as f:
pickle.dump(all_nodes, f)
print(f"Total nodes in updated file: {{len(all_nodes)}}")
asyncio.run(main())
""",
]
else:
# Process all documents
logger.info("Adding context to all nodes")
cmd = ["python", "data/scraping_scripts/add_context_to_nodes.py"]
result = subprocess.run(cmd)
if result.returncode != 0:
logger.error(f"Error adding context to nodes - check output above")
sys.exit(1)
logger.info("Successfully added context to nodes")
# Clean up temp file if it exists
if new_only and os.path.exists("data/new_docs_temp.jsonl"):
os.remove("data/new_docs_temp.jsonl")
def create_vector_stores() -> None:
"""Create vector stores from processed documents."""
logger.info("Creating vector stores")
cmd = ["python", "data/scraping_scripts/create_vector_stores.py", "all_sources"]
result = subprocess.run(cmd)
if result.returncode != 0:
logger.error(f"Error creating vector stores - check output above")
sys.exit(1)
logger.info("Successfully created vector stores")
def upload_to_huggingface(upload_jsonl: bool = False) -> None:
"""Upload databases to HuggingFace."""
logger.info("Uploading databases to HuggingFace")
cmd = ["python", "data/scraping_scripts/upload_dbs_to_hf.py"]
result = subprocess.run(cmd)
if result.returncode != 0:
logger.error(f"Error uploading databases - check output above")
sys.exit(1)
logger.info("Successfully uploaded databases to HuggingFace")
if upload_jsonl:
logger.info("Uploading data files to HuggingFace")
try:
# Note: This uses a separate private repository
cmd = ["python", "data/scraping_scripts/upload_data_to_hf.py"]
result = subprocess.run(cmd)
if result.returncode != 0:
logger.error(f"Error uploading data files - check output above")
sys.exit(1)
logger.info("Successfully uploaded data files to HuggingFace")
except Exception as e:
logger.error(f"Error uploading JSONL file: {e}")
sys.exit(1)
def main():
parser = argparse.ArgumentParser(
description="AI Tutor App Documentation Update Workflow"
)
parser.add_argument(
"--sources",
nargs="+",
choices=GITHUB_SOURCES,
default=GITHUB_SOURCES,
help="GitHub documentation sources to update",
)
parser.add_argument(
"--skip-download", action="store_true", help="Skip downloading from GitHub"
)
parser.add_argument(
"--skip-process", action="store_true", help="Skip processing markdown files"
)
parser.add_argument(
"--process-all-context",
action="store_true",
help="Process all content when adding context (default: only process new content)",
)
parser.add_argument(
"--skip-context",
action="store_true",
help="Skip the context addition step entirely",
)
parser.add_argument(
"--skip-vectors", action="store_true", help="Skip vector store creation"
)
parser.add_argument(
"--skip-upload", action="store_true", help="Skip uploading to HuggingFace"
)
parser.add_argument(
"--skip-data-upload",
action="store_true",
help="Skip uploading data files (.jsonl and .pkl) to private HuggingFace repo (they are uploaded by default)",
)
args = parser.parse_args()
# Ensure required data files exist before proceeding
ensure_required_files_exist()
# Execute the workflow steps
if not args.skip_download:
download_from_github(args.sources)
if not args.skip_process:
process_markdown_files(args.sources)
if not args.skip_context:
add_context_to_nodes(not args.process_all_context)
if not args.skip_vectors:
create_vector_stores()
if not args.skip_upload:
# By default, also upload the data files (JSONL and PKL) unless explicitly skipped
upload_to_huggingface(not args.skip_data_upload)
logger.info("Documentation update workflow completed successfully")
if __name__ == "__main__":
main()
|