File size: 9,247 Bytes
5ddcfe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import asyncio
import os
import time
import traceback
from typing import List, Optional
import logfire
import tiktoken
from cohere import AsyncClient
from dotenv import load_dotenv
from llama_index.core import Document, QueryBundle
from llama_index.core.async_utils import run_async_tasks
from llama_index.core.callbacks import CBEventType, EventPayload
from llama_index.core.retrievers import (
BaseRetriever,
KeywordTableSimpleRetriever,
VectorIndexRetriever,
)
from llama_index.core.schema import MetadataMode, NodeWithScore, QueryBundle, TextNode
from llama_index.core.vector_stores import (
FilterCondition,
FilterOperator,
MetadataFilter,
MetadataFilters,
)
from llama_index.postprocessor.cohere_rerank import CohereRerank
from llama_index.postprocessor.cohere_rerank.base import CohereRerank
load_dotenv()
class AsyncCohereRerank(CohereRerank):
def __init__(
self,
top_n: int = 5,
model: str = "rerank-english-v3.0",
api_key: Optional[str] = None,
) -> None:
super().__init__(top_n=top_n, model=model, api_key=api_key)
self._api_key = api_key
self._model = model
self._top_n = top_n
async def apostprocess_nodes(
self,
nodes: List[NodeWithScore],
query_bundle: Optional[QueryBundle] = None,
) -> List[NodeWithScore]:
if query_bundle is None:
raise ValueError("Query bundle must be provided.")
if len(nodes) == 0:
return []
async_client = AsyncClient(api_key=self._api_key)
with self.callback_manager.event(
CBEventType.RERANKING,
payload={
EventPayload.NODES: nodes,
EventPayload.MODEL_NAME: self._model,
EventPayload.QUERY_STR: query_bundle.query_str,
EventPayload.TOP_K: self._top_n,
},
) as event:
texts = [
node.node.get_content(metadata_mode=MetadataMode.EMBED)
for node in nodes
]
results = await async_client.rerank(
model=self._model,
top_n=self._top_n,
query=query_bundle.query_str,
documents=texts,
)
new_nodes = []
for result in results.results:
new_node_with_score = NodeWithScore(
node=nodes[result.index].node, score=result.relevance_score
)
new_nodes.append(new_node_with_score)
event.on_end(payload={EventPayload.NODES: new_nodes})
return new_nodes
class CustomRetriever(BaseRetriever):
"""Custom retriever that performs both semantic search and hybrid search."""
def __init__(
self,
vector_retriever: VectorIndexRetriever,
document_dict: dict,
keyword_retriever=None,
mode: str = "AND",
) -> None:
"""Init params."""
self._vector_retriever = vector_retriever
self._document_dict = document_dict
self._keyword_retriever = keyword_retriever
if mode not in ("AND", "OR"):
raise ValueError("Invalid mode.")
self._mode = mode
super().__init__()
async def _process_retrieval(
self, query_bundle: QueryBundle, is_async: bool = True
) -> List[NodeWithScore]:
"""Common processing logic for both sync and async retrieval."""
# Clean query string
query_bundle.query_str = query_bundle.query_str.replace(
"\ninput is ", ""
).rstrip()
logfire.info(f"Retrieving nodes with string: '{query_bundle}'")
start = time.time()
# Get nodes from both retrievers
if is_async:
nodes = await self._vector_retriever.aretrieve(query_bundle)
else:
nodes = self._vector_retriever.retrieve(query_bundle)
keyword_nodes = []
if self._keyword_retriever:
if is_async:
keyword_nodes = await self._keyword_retriever.aretrieve(query_bundle)
else:
keyword_nodes = self._keyword_retriever.retrieve(query_bundle)
logfire.info(f"Number of vector nodes: {len(nodes)}")
logfire.info(f"Number of keyword nodes: {len(keyword_nodes)}")
# # Filter keyword nodes based on metadata filters from vector retriever
# if (
# hasattr(self._vector_retriever, "_filters")
# and self._vector_retriever._filters
# ):
# filtered_keyword_nodes = []
# for node in keyword_nodes:
# node_source = node.node.metadata.get("source")
# # Check if node's source matches any of the filter conditions
# for filter in self._vector_retriever._filters.filters:
# if (
# isinstance(filter, MetadataFilter)
# and filter.key == "source"
# and filter.operator == FilterOperator.EQ
# and filter.value == node_source
# ):
# filtered_keyword_nodes.append(node)
# break
# keyword_nodes = filtered_keyword_nodes
# logfire.info(
# f"Number of keyword nodes after filtering: {len(keyword_nodes)}"
# )
# Combine results based on mode
vector_ids = {n.node.node_id for n in nodes}
keyword_ids = {n.node.node_id for n in keyword_nodes}
combined_dict = {n.node.node_id: n for n in nodes}
combined_dict.update({n.node.node_id: n for n in keyword_nodes})
# If no keyword retriever or no keyword nodes, just use vector nodes
if not self._keyword_retriever or not keyword_nodes:
retrieve_ids = vector_ids
else:
retrieve_ids = (
vector_ids.intersection(keyword_ids)
if self._mode == "AND"
else vector_ids.union(keyword_ids)
)
nodes = [combined_dict[rid] for rid in retrieve_ids]
logfire.info(f"Number of combined nodes: {len(nodes)}")
# Filter unique doc IDs
nodes = self._filter_nodes_by_unique_doc_id(nodes)
logfire.info(f"Number of nodes without duplicate doc IDs: {len(nodes)}")
# Process node contents
for node in nodes:
doc_id = node.node.source_node.node_id
if node.metadata["retrieve_doc"]:
doc = self._document_dict[doc_id]
node.node.text = doc.text
node.node.node_id = doc_id
# Rerank results
try:
reranker = (
AsyncCohereRerank(top_n=5, model="rerank-english-v3.0")
if is_async
else CohereRerank(top_n=5, model="rerank-english-v3.0")
)
nodes = (
await reranker.apostprocess_nodes(nodes, query_bundle)
if is_async
else reranker.postprocess_nodes(nodes, query_bundle)
)
except Exception as e:
error_msg = f"Error during reranking: {type(e).__name__}: {str(e)}\n"
error_msg += "Traceback:\n"
error_msg += traceback.format_exc()
logfire.error(error_msg)
# Filter by score and token count
nodes_filtered = self._filter_by_score_and_tokens(nodes)
duration = time.time() - start
logfire.info(f"Retrieving nodes took {duration:.2f}s")
logfire.info(f"Nodes sent to LLM: {nodes_filtered[:5]}")
return nodes_filtered[:5]
def _filter_nodes_by_unique_doc_id(
self, nodes: List[NodeWithScore]
) -> List[NodeWithScore]:
"""Filter nodes to keep only unique doc IDs."""
unique_nodes = {}
for node in nodes:
doc_id = node.node.source_node.node_id
if doc_id is not None and doc_id not in unique_nodes:
unique_nodes[doc_id] = node
return list(unique_nodes.values())
def _filter_by_score_and_tokens(
self, nodes: List[NodeWithScore]
) -> List[NodeWithScore]:
"""Filter nodes by score and token count."""
nodes_filtered = []
total_tokens = 0
enc = tiktoken.encoding_for_model("gpt-4o-mini")
for node in nodes:
if node.score < 0.10:
logfire.info(f"Skipping node with score {node.score}")
continue
node_tokens = len(enc.encode(node.node.text))
if total_tokens + node_tokens > 100_000:
logfire.info("Skipping node due to token count exceeding 100k")
break
total_tokens += node_tokens
nodes_filtered.append(node)
return nodes_filtered
async def _aretrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Async retrieve nodes given query."""
return await self._process_retrieval(query_bundle, is_async=True)
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Sync retrieve nodes given query."""
return asyncio.run(self._process_retrieval(query_bundle, is_async=False))
|