Add Python Primer source to available sources and UI configuration
Browse files- scripts/main.py +3 -32
- scripts/setup.py +5 -75
scripts/main.py
CHANGED
@@ -15,7 +15,7 @@ from llama_index.core.vector_stores import (
|
|
15 |
)
|
16 |
from llama_index.llms.openai import OpenAI
|
17 |
from prompts import system_message_openai_agent
|
18 |
-
from setup import (
|
19 |
AVAILABLE_SOURCES,
|
20 |
AVAILABLE_SOURCES_UI,
|
21 |
CONCURRENCY_COUNT,
|
@@ -26,36 +26,6 @@ from setup import ( # custom_retriever_langchain,; custom_retriever_llama_index
|
|
26 |
def update_query_engine_tools(selected_sources) -> list[RetrieverTool]:
|
27 |
tools = []
|
28 |
source_mapping: dict[str, tuple[CustomRetriever, str, str]] = {
|
29 |
-
# "Transformers Docs": (
|
30 |
-
# custom_retriever_transformers,
|
31 |
-
# "Transformers_information",
|
32 |
-
# """Useful for general questions asking about the artificial intelligence (AI) field. Employ this tool to fetch information on topics such as language models (LLMs) models such as Llama3 and theory (transformer architectures), tips on prompting, quantization, etc.""",
|
33 |
-
# ),
|
34 |
-
# "PEFT Docs": (
|
35 |
-
# custom_retriever_peft,
|
36 |
-
# "PEFT_information",
|
37 |
-
# """Useful for questions asking about efficient LLM fine-tuning. Employ this tool to fetch information on topics such as LoRA, QLoRA, etc.""",
|
38 |
-
# ),
|
39 |
-
# "TRL Docs": (
|
40 |
-
# custom_retriever_trl,
|
41 |
-
# "TRL_information",
|
42 |
-
# """Useful for questions asking about fine-tuning LLMs with reinforcement learning (RLHF). Includes information about the Supervised Fine-tuning step (SFT), Reward Modeling step (RM), and the Proximal Policy Optimization (PPO) step.""",
|
43 |
-
# ),
|
44 |
-
# "LlamaIndex Docs": (
|
45 |
-
# custom_retriever_llama_index,
|
46 |
-
# "LlamaIndex_information",
|
47 |
-
# """Useful for questions asking about retrieval augmented generation (RAG) with LLMs and embedding models. It is the documentation of a framework, includes info about fine-tuning embedding models, building chatbots, and agents with llms, using vector databases, embeddings, information retrieval with cosine similarity or bm25, etc.""",
|
48 |
-
# ),
|
49 |
-
# "OpenAI Cookbooks": (
|
50 |
-
# custom_retriever_openai_cookbooks,
|
51 |
-
# "openai_cookbooks_info",
|
52 |
-
# """Useful for questions asking about accomplishing common tasks with the OpenAI API. Returns example code and guides stored in Jupyter notebooks, including info about ChatGPT GPT actions, OpenAI Assistants API, and How to fine-tune OpenAI's GPT-4o and GPT-4o-mini models with the OpenAI API.""",
|
53 |
-
# ),
|
54 |
-
# "LangChain Docs": (
|
55 |
-
# custom_retriever_langchain,
|
56 |
-
# "langchain_info",
|
57 |
-
# """Useful for questions asking about the LangChain framework. It is the documentation of the LangChain framework, includes info about building chains, agents, and tools, using memory, prompts, callbacks, etc.""",
|
58 |
-
# ),
|
59 |
"All Sources": (
|
60 |
custom_retriever_all_sources,
|
61 |
"all_sources_info",
|
@@ -130,6 +100,7 @@ def generate_completion(
|
|
130 |
"Towards AI Blog": "tai_blog",
|
131 |
"8 Hour Primer": "8-hour_primer",
|
132 |
"Advanced LLM Developer": "llm_developer",
|
|
|
133 |
}
|
134 |
|
135 |
for source in sources:
|
@@ -247,7 +218,7 @@ sources = gr.CheckboxGroup(
|
|
247 |
"Towards AI Blog",
|
248 |
"8 Hour Primer",
|
249 |
"Advanced LLM Developer",
|
250 |
-
|
251 |
],
|
252 |
interactive=True,
|
253 |
)
|
|
|
15 |
)
|
16 |
from llama_index.llms.openai import OpenAI
|
17 |
from prompts import system_message_openai_agent
|
18 |
+
from setup import (
|
19 |
AVAILABLE_SOURCES,
|
20 |
AVAILABLE_SOURCES_UI,
|
21 |
CONCURRENCY_COUNT,
|
|
|
26 |
def update_query_engine_tools(selected_sources) -> list[RetrieverTool]:
|
27 |
tools = []
|
28 |
source_mapping: dict[str, tuple[CustomRetriever, str, str]] = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
"All Sources": (
|
30 |
custom_retriever_all_sources,
|
31 |
"all_sources_info",
|
|
|
100 |
"Towards AI Blog": "tai_blog",
|
101 |
"8 Hour Primer": "8-hour_primer",
|
102 |
"Advanced LLM Developer": "llm_developer",
|
103 |
+
"Python Primer": "python_primer",
|
104 |
}
|
105 |
|
106 |
for source in sources:
|
|
|
218 |
"Towards AI Blog",
|
219 |
"8 Hour Primer",
|
220 |
"Advanced LLM Developer",
|
221 |
+
"Python Primer",
|
222 |
],
|
223 |
interactive=True,
|
224 |
)
|
scripts/setup.py
CHANGED
@@ -8,16 +8,10 @@ import chromadb
|
|
8 |
import logfire
|
9 |
from custom_retriever import CustomRetriever
|
10 |
from dotenv import load_dotenv
|
11 |
-
from llama_index.core import Document,
|
12 |
-
from llama_index.core.ingestion import IngestionPipeline
|
13 |
from llama_index.core.node_parser import SentenceSplitter
|
14 |
-
from llama_index.core.retrievers import
|
15 |
-
KeywordTableSimpleRetriever,
|
16 |
-
VectorIndexRetriever,
|
17 |
-
)
|
18 |
-
from llama_index.core.schema import NodeWithScore, QueryBundle
|
19 |
from llama_index.embeddings.cohere import CohereEmbedding
|
20 |
-
from llama_index.embeddings.openai import OpenAIEmbedding
|
21 |
from llama_index.vector_stores.chroma import ChromaVectorStore
|
22 |
from utils import init_mongo_db
|
23 |
|
@@ -99,73 +93,15 @@ def setup_database(db_collection, dict_file_name) -> CustomRetriever:
|
|
99 |
with open(f"data/{db_collection}/{dict_file_name}", "rb") as f:
|
100 |
document_dict = pickle.load(f)
|
101 |
|
102 |
-
# with open("data/keyword_retriever_sync.pkl", "rb") as f:
|
103 |
-
# keyword_retriever: KeywordTableSimpleRetriever = pickle.load(f)
|
104 |
-
|
105 |
-
# keyword_retriever.num_chunks_per_query = 15
|
106 |
-
|
107 |
-
# # Creating the keyword index and retriever
|
108 |
-
# logfire.info("Creating nodes from documents")
|
109 |
-
# documents = create_docs("data/all_sources_data.jsonl")
|
110 |
-
# pipeline = IngestionPipeline(
|
111 |
-
# transformations=[SentenceSplitter(chunk_size=800, chunk_overlap=0)]
|
112 |
-
# )
|
113 |
-
# all_nodes = pipeline.run(documents=documents, show_progress=True)
|
114 |
-
# # with open("data/all_nodes.pkl", "wb") as f:
|
115 |
-
# # pickle.dump(all_nodes, f)
|
116 |
-
|
117 |
-
# all_nodes = pickle.load(open("data/nodes_with_added_context.pkl", "rb"))
|
118 |
-
# logfire.info(f"Number of nodes: {len(all_nodes)}")
|
119 |
-
|
120 |
-
# keyword_index = SimpleKeywordTableIndex(
|
121 |
-
# nodes=all_nodes, max_keywords_per_chunk=10, show_progress=True, use_async=False
|
122 |
-
# )
|
123 |
-
# # with open("data/keyword_index.pkl", "wb") as f:
|
124 |
-
# # pickle.dump(keyword_index, f)
|
125 |
-
|
126 |
-
# # keyword_index = pickle.load(open("data/keyword_index.pkl", "rb"))
|
127 |
-
|
128 |
-
# logfire.info("Creating keyword retriever")
|
129 |
-
# keyword_retriever = KeywordTableSimpleRetriever(index=keyword_index)
|
130 |
-
|
131 |
-
# with open("data/keyword_retriever_sync.pkl", "wb") as f:
|
132 |
-
# pickle.dump(keyword_retriever, f)
|
133 |
-
|
134 |
-
# 'OR' Means both the vector nodes and the keyword nodes
|
135 |
-
# return CustomRetriever(vector_retriever, document_dict, keyword_retriever, "OR")
|
136 |
return CustomRetriever(vector_retriever, document_dict)
|
137 |
|
138 |
|
139 |
-
# Setup retrievers
|
140 |
-
# custom_retriever_transformers: CustomRetriever = setup_database(
|
141 |
-
# "chroma-db-transformers",
|
142 |
-
# "document_dict_transformers.pkl",
|
143 |
-
# )
|
144 |
-
# custom_retriever_peft: CustomRetriever = setup_database(
|
145 |
-
# "chroma-db-peft", "document_dict_peft.pkl"
|
146 |
-
# )
|
147 |
-
# custom_retriever_trl: CustomRetriever = setup_database(
|
148 |
-
# "chroma-db-trl", "document_dict_trl.pkl"
|
149 |
-
# )
|
150 |
-
# custom_retriever_llama_index: CustomRetriever = setup_database(
|
151 |
-
# "chroma-db-llama_index",
|
152 |
-
# "document_dict_llama_index.pkl",
|
153 |
-
# )
|
154 |
-
# custom_retriever_openai_cookbooks: CustomRetriever = setup_database(
|
155 |
-
# "chroma-db-openai_cookbooks",
|
156 |
-
# "document_dict_openai_cookbooks.pkl",
|
157 |
-
# )
|
158 |
-
# custom_retriever_langchain: CustomRetriever = setup_database(
|
159 |
-
# "chroma-db-langchain",
|
160 |
-
# "document_dict_langchain.pkl",
|
161 |
-
# )
|
162 |
-
|
163 |
custom_retriever_all_sources: CustomRetriever = setup_database(
|
164 |
"chroma-db-all_sources",
|
165 |
"document_dict_all_sources.pkl",
|
166 |
)
|
167 |
|
168 |
-
|
169 |
CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
|
170 |
MONGODB_URI = os.getenv("MONGODB_URI")
|
171 |
|
@@ -179,7 +115,7 @@ AVAILABLE_SOURCES_UI = [
|
|
179 |
"Towards AI Blog",
|
180 |
"8 Hour Primer",
|
181 |
"Advanced LLM Developer",
|
182 |
-
|
183 |
]
|
184 |
|
185 |
AVAILABLE_SOURCES = [
|
@@ -192,7 +128,7 @@ AVAILABLE_SOURCES = [
|
|
192 |
"tai_blog",
|
193 |
"8-hour_primer",
|
194 |
"llm_developer",
|
195 |
-
|
196 |
]
|
197 |
|
198 |
mongo_db = (
|
@@ -202,12 +138,6 @@ mongo_db = (
|
|
202 |
)
|
203 |
|
204 |
__all__ = [
|
205 |
-
# "custom_retriever_transformers",
|
206 |
-
# "custom_retriever_peft",
|
207 |
-
# "custom_retriever_trl",
|
208 |
-
# "custom_retriever_llama_index",
|
209 |
-
# "custom_retriever_openai_cookbooks",
|
210 |
-
# "custom_retriever_langchain",
|
211 |
"custom_retriever_all_sources",
|
212 |
"mongo_db",
|
213 |
"CONCURRENCY_COUNT",
|
|
|
8 |
import logfire
|
9 |
from custom_retriever import CustomRetriever
|
10 |
from dotenv import load_dotenv
|
11 |
+
from llama_index.core import Document, VectorStoreIndex
|
|
|
12 |
from llama_index.core.node_parser import SentenceSplitter
|
13 |
+
from llama_index.core.retrievers import VectorIndexRetriever
|
|
|
|
|
|
|
|
|
14 |
from llama_index.embeddings.cohere import CohereEmbedding
|
|
|
15 |
from llama_index.vector_stores.chroma import ChromaVectorStore
|
16 |
from utils import init_mongo_db
|
17 |
|
|
|
93 |
with open(f"data/{db_collection}/{dict_file_name}", "rb") as f:
|
94 |
document_dict = pickle.load(f)
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
return CustomRetriever(vector_retriever, document_dict)
|
97 |
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
custom_retriever_all_sources: CustomRetriever = setup_database(
|
100 |
"chroma-db-all_sources",
|
101 |
"document_dict_all_sources.pkl",
|
102 |
)
|
103 |
|
104 |
+
|
105 |
CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
|
106 |
MONGODB_URI = os.getenv("MONGODB_URI")
|
107 |
|
|
|
115 |
"Towards AI Blog",
|
116 |
"8 Hour Primer",
|
117 |
"Advanced LLM Developer",
|
118 |
+
"Python Primer",
|
119 |
]
|
120 |
|
121 |
AVAILABLE_SOURCES = [
|
|
|
128 |
"tai_blog",
|
129 |
"8-hour_primer",
|
130 |
"llm_developer",
|
131 |
+
"python_primer",
|
132 |
]
|
133 |
|
134 |
mongo_db = (
|
|
|
138 |
)
|
139 |
|
140 |
__all__ = [
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
"custom_retriever_all_sources",
|
142 |
"mongo_db",
|
143 |
"CONCURRENCY_COUNT",
|