Add comprehensive Claude instructions for AI Tutor App
Browse files
CLAUDE.md
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AI Tutor App Instructions for Claude
|
2 |
+
|
3 |
+
## Project Overview
|
4 |
+
This is an AI tutor application that uses RAG (Retrieval Augmented Generation) to provide accurate responses about AI concepts by searching through multiple documentation sources. The application has a Gradio UI and uses ChromaDB for vector storage.
|
5 |
+
|
6 |
+
## Key Repositories and URLs
|
7 |
+
- Main code: https://github.com/towardsai/ai-tutor-app
|
8 |
+
- Live demo: https://huggingface.co/spaces/towardsai-tutors/ai-tutor-chatbot
|
9 |
+
- Vector database: https://huggingface.co/datasets/towardsai-tutors/ai-tutor-vector-db
|
10 |
+
- Private JSONL repo: https://huggingface.co/datasets/towardsai-tutors/ai-tutor-data
|
11 |
+
|
12 |
+
## Architecture Overview
|
13 |
+
- Frontend: Gradio-based UI in `scripts/main.py`
|
14 |
+
- Retrieval: Custom retriever using ChromaDB vector stores
|
15 |
+
- Embedding: Cohere embeddings for vector search
|
16 |
+
- LLM: OpenAI models (GPT-4o, etc.) for context addition and responses
|
17 |
+
- Storage: Individual JSONL files per source + combined file for retrieval
|
18 |
+
|
19 |
+
## Data Update Workflows
|
20 |
+
|
21 |
+
### 1. Adding a New Course
|
22 |
+
```bash
|
23 |
+
python data/scraping_scripts/add_course_workflow.py --course [COURSE_NAME]
|
24 |
+
```
|
25 |
+
- This requires the course to be configured in `process_md_files.py` under `SOURCE_CONFIGS`
|
26 |
+
- The workflow will pause for manual URL addition after processing markdown files
|
27 |
+
- Only new content will have context added by default (efficient)
|
28 |
+
- Use `--process-all-context` if you need to regenerate context for all documents
|
29 |
+
- Both database and data files are uploaded to HuggingFace by default
|
30 |
+
- Use `--skip-data-upload` if you don't want to upload data files
|
31 |
+
|
32 |
+
### 2. Updating Documentation from GitHub
|
33 |
+
```bash
|
34 |
+
python data/scraping_scripts/update_docs_workflow.py
|
35 |
+
```
|
36 |
+
- Updates all supported documentation sources (or specify specific ones with `--sources`)
|
37 |
+
- Downloads fresh documentation from GitHub repositories
|
38 |
+
- Only new content will have context added by default (efficient)
|
39 |
+
- Use `--process-all-context` if you need to regenerate context for all documents
|
40 |
+
- Both database and data files are uploaded to HuggingFace by default
|
41 |
+
- Use `--skip-data-upload` if you don't want to upload data files
|
42 |
+
|
43 |
+
### 3. Data File Management
|
44 |
+
```bash
|
45 |
+
# Upload both JSONL and PKL files to private HuggingFace repository
|
46 |
+
python data/scraping_scripts/upload_data_to_hf.py
|
47 |
+
```
|
48 |
+
|
49 |
+
## Data Flow and File Relationships
|
50 |
+
|
51 |
+
### Document Processing Pipeline
|
52 |
+
1. **Markdown Files** β `process_md_files.py` β **Individual JSONL files** (e.g., `transformers_data.jsonl`)
|
53 |
+
2. Individual JSONL files β `combine_all_sources()` β `all_sources_data.jsonl`
|
54 |
+
3. `all_sources_data.jsonl` β `add_context_to_nodes.py` β `all_sources_contextual_nodes.pkl`
|
55 |
+
4. `all_sources_contextual_nodes.pkl` β `create_vector_stores.py` β ChromaDB vector stores
|
56 |
+
|
57 |
+
### Important Files and Their Purpose
|
58 |
+
- `all_sources_data.jsonl` - Combined raw document data without context
|
59 |
+
- Source-specific JSONL files (e.g., `transformers_data.jsonl`) - Raw data for individual sources
|
60 |
+
- `all_sources_contextual_nodes.pkl` - Processed nodes with added context
|
61 |
+
- `chroma-db-all_sources` - Vector database directory containing embeddings
|
62 |
+
- `document_dict_all_sources.pkl` - Dictionary mapping document IDs to full documents
|
63 |
+
|
64 |
+
## Configuration Details
|
65 |
+
|
66 |
+
### Adding a New Course Source
|
67 |
+
1. Update `SOURCE_CONFIGS` in `process_md_files.py`:
|
68 |
+
```python
|
69 |
+
"new_course": {
|
70 |
+
"base_url": "",
|
71 |
+
"input_directory": "data/new_course",
|
72 |
+
"output_file": "data/new_course_data.jsonl",
|
73 |
+
"source_name": "new_course",
|
74 |
+
"use_include_list": False,
|
75 |
+
"included_dirs": [],
|
76 |
+
"excluded_dirs": [],
|
77 |
+
"excluded_root_files": [],
|
78 |
+
"included_root_files": [],
|
79 |
+
"url_extension": "",
|
80 |
+
},
|
81 |
+
```
|
82 |
+
|
83 |
+
2. Update UI configurations in:
|
84 |
+
- `setup.py`: Add to `AVAILABLE_SOURCES` and `AVAILABLE_SOURCES_UI`
|
85 |
+
- `main.py`: Add mapping in `source_mapping` dictionary
|
86 |
+
|
87 |
+
## Deployment and Publishing
|
88 |
+
|
89 |
+
### GitHub Actions Workflow
|
90 |
+
The application is automatically deployed to HuggingFace Spaces when changes are pushed to the main branch (excluding documentation and scraping scripts).
|
91 |
+
|
92 |
+
### Manual Deployment
|
93 |
+
```bash
|
94 |
+
git push --force https://$HF_USERNAME:[email protected]/spaces/towardsai-tutors/ai-tutor-chatbot main:main
|
95 |
+
```
|
96 |
+
|
97 |
+
## Development Environment Setup
|
98 |
+
|
99 |
+
### Required Environment Variables
|
100 |
+
- `OPENAI_API_KEY` - For LLM processing
|
101 |
+
- `COHERE_API_KEY` - For embeddings
|
102 |
+
- `HF_TOKEN` - For HuggingFace uploads
|
103 |
+
- `GITHUB_TOKEN` - For accessing documentation via the GitHub API
|
104 |
+
|
105 |
+
### Running the Application Locally
|
106 |
+
```bash
|
107 |
+
# Install dependencies
|
108 |
+
pip install -r requirements.txt
|
109 |
+
|
110 |
+
# Start the Gradio UI
|
111 |
+
python scripts/main.py
|
112 |
+
```
|
113 |
+
|
114 |
+
## Important Notes
|
115 |
+
|
116 |
+
1. When adding new courses, make sure to:
|
117 |
+
- Place markdown files exported from Notion in the appropriate directory
|
118 |
+
- Add URLs manually from the live course platform
|
119 |
+
- Example URL format: `https://academy.towardsai.net/courses/take/python-for-genai/multimedia/62515980-course-structure`
|
120 |
+
- Configure the course in `process_md_files.py`
|
121 |
+
- Verify it appears in the UI after deployment
|
122 |
+
|
123 |
+
2. For updating documentation:
|
124 |
+
- The GitHub API is used to fetch the latest documentation
|
125 |
+
- The workflow handles updating existing sources without affecting course data
|
126 |
+
|
127 |
+
3. For efficient context addition:
|
128 |
+
- Only new content gets processed by default
|
129 |
+
- Old nodes for updated sources are removed from the PKL file
|
130 |
+
- This ensures no duplicate content in the vector database
|
131 |
+
|
132 |
+
## Technical Details for Debugging
|
133 |
+
|
134 |
+
### Node Removal Logic
|
135 |
+
- When adding context, the workflow now removes existing nodes for sources being updated
|
136 |
+
- This prevents duplication of content in the vector database
|
137 |
+
- The source of each node is extracted from either `node.source_node.metadata` or `node.metadata`
|
138 |
+
|
139 |
+
### Performance Considerations
|
140 |
+
- Context addition is the most time-consuming step (uses OpenAI API)
|
141 |
+
- The new default behavior only processes new content
|
142 |
+
- For large updates, consider running in batches
|