""" Markdown Document Processor for Documentation Sources This script processes Markdown (.md) and MDX (.mdx) files from various documentation sources (such as Hugging Face Transformers, PEFT, TRL, LlamaIndex, and OpenAI Cookbook) and converts them into a standardized JSONL format for further processing or indexing. Key features: 1. Configurable for multiple documentation sources 2. Extracts titles, generates URLs, and counts tokens for each document 3. Supports inclusion/exclusion of specific directories and root files 4. Removes copyright headers from content 5. Generates a unique ID for each document 6. Determines if a whole document should be retrieved based on token count 7. Handles special cases like openai-cookbook repo by adding .ipynb extensions 8. Processes multiple sources in a single run Usage: python process_md_files.py ... Where , , etc. are one or more of the predefined sources in SOURCE_CONFIGS (e.g., 'transformers', 'llama_index', 'openai_cookbooks'). The script processes all Markdown files in the specified input directories (and their subdirectories), applies the configured filters, and saves the results in JSONL files. Each line in the output files represents a single document with metadata and content. To add or modify sources, update the SOURCE_CONFIGS dictionary at the top of the script. """ import argparse import json import logging import os import re import uuid from typing import Dict, List import tiktoken logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Configuration for different sources SOURCE_CONFIGS = { "transformers": { "base_url": "https://huggingface.co/docs/transformers/", "input_directory": "data/transformers_md_files", "output_file": "data/transformers_data.jsonl", "source_name": "transformers", "use_include_list": False, "included_dirs": [], "excluded_dirs": ["internal", "main_classes"], "excluded_root_files": [], "included_root_files": [], "url_extension": "", }, "peft": { "base_url": "https://huggingface.co/docs/peft/", "input_directory": "data/peft_md_files", "output_file": "data/peft_data.jsonl", "source_name": "peft", "use_include_list": False, "included_dirs": [], "excluded_dirs": [], "excluded_root_files": [], "included_root_files": [], "url_extension": "", }, "trl": { "base_url": "https://huggingface.co/docs/trl/", "input_directory": "data/trl_md_files", "output_file": "data/trl_data.jsonl", "source_name": "trl", "use_include_list": False, "included_dirs": [], "excluded_dirs": [], "excluded_root_files": [], "included_root_files": [], "url_extension": "", }, "llama_index": { "base_url": "https://docs.llamaindex.ai/en/stable/", "input_directory": "data/llama_index_md_files", "output_file": "data/llama_index_data.jsonl", "source_name": "llama_index", "use_include_list": True, "included_dirs": [ "getting_started", "understanding", "use_cases", "examples", "module_guides", "optimizing", ], "excluded_dirs": [], "excluded_root_files": [], "included_root_files": ["index.md"], "url_extension": "", }, "openai_cookbooks": { "base_url": "https://github.com/openai/openai-cookbook/blob/main/examples/", "input_directory": "data/openai-cookbook_md_files", "output_file": "data/openai_cookbooks_data.jsonl", "source_name": "openai_cookbooks", "use_include_list": False, "included_dirs": [], "excluded_dirs": [], "excluded_root_files": [], "included_root_files": [], "url_extension": ".ipynb", }, "langchain": { "base_url": "https://python.langchain.com/docs/", "input_directory": "data/langchain_md_files", "output_file": "data/langchain_data.jsonl", "source_name": "langchain", "use_include_list": True, "included_dirs": ["how_to", "versions", "turorials", "integrations"], "excluded_dirs": [], "excluded_root_files": [], "included_root_files": ["security.md", "concepts.mdx", "introduction.mdx"], "url_extension": "", }, "tai_blog": { "base_url": "", "input_directory": "", "output_file": "data/tai_blog_data.jsonl", "source_name": "tai_blog", "use_include_list": False, "included_dirs": [], "excluded_dirs": [], "excluded_root_files": [], "included_root_files": [], "url_extension": "", }, "8-hour_primer": { "base_url": "", "input_directory": "data/8-hour_primer", # Path to the directory that contains the Markdown files "output_file": "data/8-hour_primer_data.jsonl", # 8-hour Generative AI Primer "source_name": "8-hour_primer", "use_include_list": False, "included_dirs": [], "excluded_dirs": [], "excluded_root_files": [], "included_root_files": [], "url_extension": "", }, "llm_developer": { "base_url": "", "input_directory": "data/llm_developer", # Path to the directory that contains the Markdown files "output_file": "data/llm_developer_data.jsonl", # From Beginner to Advanced LLM Developer "source_name": "llm_developer", "use_include_list": False, "included_dirs": [], "excluded_dirs": [], "excluded_root_files": [], "included_root_files": [], "url_extension": "", }, "python_primer": { "base_url": "", "input_directory": "data/python_primer", # Path to the directory that contains the Markdown files "output_file": "data/python_primer_data.jsonl", # From Beginner to Advanced LLM Developer "source_name": "python_primer", "use_include_list": False, "included_dirs": [], "excluded_dirs": [], "excluded_root_files": [], "included_root_files": [], "url_extension": "", }, } def extract_title(content: str): title_match = re.search(r"^#\s+(.+)$", content, re.MULTILINE) if title_match: return title_match.group(1).strip() lines = content.split("\n") for line in lines: if line.strip(): return line.strip() return None def generate_url(file_path: str, config: Dict) -> str: """ Return an empty string if base_url is empty; otherwise return the constructed URL as before. """ if not config["base_url"]: return "" path_without_extension = os.path.splitext(file_path)[0] path_with_forward_slashes = path_without_extension.replace("\\", "/") return config["base_url"] + path_with_forward_slashes + config["url_extension"] def should_include_file(file_path: str, config: Dict) -> bool: if os.path.dirname(file_path) == "": if config["use_include_list"]: return os.path.basename(file_path) in config["included_root_files"] else: return os.path.basename(file_path) not in config["excluded_root_files"] if config["use_include_list"]: return any(file_path.startswith(dir) for dir in config["included_dirs"]) else: return not any(file_path.startswith(dir) for dir in config["excluded_dirs"]) def num_tokens_from_string(string: str, encoding_name: str) -> int: encoding = tiktoken.get_encoding(encoding_name) num_tokens = len(encoding.encode(string, disallowed_special=())) return num_tokens def remove_copyright_header(content: str) -> str: header_pattern = re.compile(r"\s*", re.DOTALL) cleaned_content = header_pattern.sub("", content, count=1) return cleaned_content.strip() def process_md_files(directory: str, config: Dict) -> List[Dict]: jsonl_data = [] for root, _, files in os.walk(directory): for file in files: if file.endswith(".md") or file.endswith(".mdx"): file_path = os.path.join(root, file) relative_path = os.path.relpath(file_path, directory) if should_include_file(relative_path, config): with open(file_path, "r", encoding="utf-8") as f: content = f.read() title = extract_title(content) token_count = num_tokens_from_string(content, "cl100k_base") # Skip very small or extremely large files if token_count < 100 or token_count > 200_000: logger.info( f"Skipping {relative_path} due to token count {token_count}" ) continue cleaned_content = remove_copyright_header(content) json_object = { "tokens": token_count, "doc_id": str(uuid.uuid4()), "name": (title if title else file), "url": generate_url(relative_path, config), "retrieve_doc": (token_count <= 8000), "source": config["source_name"], "content": cleaned_content, } jsonl_data.append(json_object) return jsonl_data def save_jsonl(data: List[Dict], output_file: str) -> None: with open(output_file, "w", encoding="utf-8") as f: for item in data: json.dump(item, f, ensure_ascii=False) f.write("\n") def combine_all_sources(sources: List[str]) -> None: """ Combine JSONL files from multiple sources, preserving existing sources not being processed. For example, if sources = ['transformers'], this will: 1. Load data from transformers_data.jsonl 2. Load data from all other source JSONL files that exist (course files, etc.) 3. Combine them all into all_sources_data.jsonl """ all_data = [] output_file = "data/all_sources_data.jsonl" # Track which sources we're processing processed_sources = set() # First, add data from sources we're explicitly processing for source in sources: if source not in SOURCE_CONFIGS: logger.error(f"Unknown source '{source}'. Skipping.") continue processed_sources.add(source) input_file = SOURCE_CONFIGS[source]["output_file"] logger.info(f"Processing updated source: {source} from {input_file}") try: source_data = [] with open(input_file, "r", encoding="utf-8") as f: for line in f: source_data.append(json.loads(line)) logger.info(f"Added {len(source_data)} documents from {source}") all_data.extend(source_data) except Exception as e: logger.error(f"Error loading {input_file}: {e}") # Now add data from all other sources not being processed for source_name, config in SOURCE_CONFIGS.items(): # Skip sources we already processed if source_name in processed_sources: continue # Try to load the individual source file source_file = config["output_file"] if os.path.exists(source_file): logger.info(f"Preserving existing source: {source_name} from {source_file}") try: source_data = [] with open(source_file, "r", encoding="utf-8") as f: for line in f: source_data.append(json.loads(line)) logger.info(f"Preserved {len(source_data)} documents from {source_name}") all_data.extend(source_data) except Exception as e: logger.error(f"Error loading {source_file}: {e}") logger.info(f"Total documents combined: {len(all_data)}") save_jsonl(all_data, output_file) logger.info(f"Combined data saved to {output_file}") def process_source(source: str) -> None: if source not in SOURCE_CONFIGS: logger.error(f"Unknown source '{source}'. Skipping.") return config = SOURCE_CONFIGS[source] logger.info(f"\n\nProcessing source: {source}") jsonl_data = process_md_files(config["input_directory"], config) save_jsonl(jsonl_data, config["output_file"]) logger.info( f"Processed {len(jsonl_data)} files and saved to {config['output_file']}" ) def main(sources: List[str]) -> None: for source in sources: process_source(source) if len(sources) > 1: combine_all_sources(sources) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Process Markdown files from specified sources." ) parser.add_argument( "sources", nargs="+", choices=SOURCE_CONFIGS.keys(), help="Specify one or more sources to process", ) args = parser.parse_args() main(args.sources)