jerpint commited on
Commit
01b468b
·
unverified ·
1 Parent(s): 2f93ee4

add markdown parser (#5)

Browse files
Files changed (3) hide show
  1. cfg.py +8 -13
  2. embed_documents.py +1 -6
  3. markdown_parser.py +92 -0
cfg.py CHANGED
@@ -35,9 +35,9 @@ hf_hub_download(
35
  extract_zip(zip_file_path=HUB_DB_FILE, output_path="deeplake_store")
36
 
37
  example_questions = [
38
- "What's the best way to get a job in AI?",
39
- "What is prompt engineering?",
40
- "What is generative AI?",
41
  ]
42
 
43
 
@@ -50,12 +50,10 @@ buster_cfg = BusterConfig(
50
  "embedding_model": "text-embedding-ada-002",
51
  "use_reranking": True,
52
  "invalid_question_response": "This question does not seem relevant to my current knowledge.",
53
- "check_question_prompt": """You are an chatbot answering questions on towardsAI, an artificial intelligence blogs.
54
-
55
- Users will be asking questions about the blog.
56
- Your job is to determine wether or not a question is a valid question to ask, and should be answered.
57
- More general questions are not considered valid, even if you might know the response.
58
- A user will submit a question. Respond 'true' if it is valid, respond 'false' if it is invalid.
59
 
60
  For example:
61
 
@@ -65,7 +63,7 @@ true
65
  Q: What is the meaning of life?
66
  false
67
 
68
- A user will submit a question. Respond 'true' if it is valid, respond 'false' if it is invalid.""",
69
  "completion_kwargs": {
70
  "model": "gpt-3.5-turbo",
71
  "stream": False,
@@ -130,9 +128,6 @@ A user will submit a question. Respond 'true' if it is valid, respond 'false' if
130
  },
131
  )
132
 
133
- # initialize buster with the config in cfg.py (adapt to your needs) ...
134
- # buster_cfg = cfg.buster_cfg
135
-
136
 
137
  def setup_buster(buster_cfg):
138
  retriever: Retriever = DeepLakeRetriever(**buster_cfg.retriever_cfg)
 
35
  extract_zip(zip_file_path=HUB_DB_FILE, output_path="deeplake_store")
36
 
37
  example_questions = [
38
+ "What is the LLama model?",
39
+ "What is a LLM?",
40
+ "What is an embedding?",
41
  ]
42
 
43
 
 
50
  "embedding_model": "text-embedding-ada-002",
51
  "use_reranking": True,
52
  "invalid_question_response": "This question does not seem relevant to my current knowledge.",
53
+ "check_question_prompt": """You are a chatbot, answering questions about large language models and artificial intelligence.
54
+ Users will ask all sorts of questions, and some might be tangentially related.
55
+ Users will learn to build LLM-powered apps, with LangChain & Deep Lake among other technologies.
56
+ As long as a question is somewhat related to the topic, respond 'true'. If a question is completely unrelated, respond 'false'.
 
 
57
 
58
  For example:
59
 
 
63
  Q: What is the meaning of life?
64
  false
65
 
66
+ A user will now submit a question. Respond 'true' if it is valid, respond 'false' if it is invalid.""",
67
  "completion_kwargs": {
68
  "model": "gpt-3.5-turbo",
69
  "stream": False,
 
128
  },
129
  )
130
 
 
 
 
131
 
132
  def setup_buster(buster_cfg):
133
  retriever: Retriever = DeepLakeRetriever(**buster_cfg.retriever_cfg)
embed_documents.py CHANGED
@@ -3,16 +3,11 @@ from buster.documents_manager import DeepLakeDocumentsManager
3
 
4
  if __name__ == "__main__":
5
  vector_store_path = "deeplake_store"
6
- chunk_file = "data/output.csv"
7
  overwrite = True
8
 
9
  df = pd.read_csv(chunk_file)
10
 
11
- # some pre-processing based on the latest file provided
12
- df["url"] = df["source"]
13
- df["source"] = "towardsai_blog"
14
- df = df.dropna()
15
-
16
  dm = DeepLakeDocumentsManager(vector_store_path, overwrite=overwrite)
17
  dm.batch_add(df)
18
  zipped_file_path = dm.to_zip()
 
3
 
4
  if __name__ == "__main__":
5
  vector_store_path = "deeplake_store"
6
+ chunk_file = "langchain_course.csv"
7
  overwrite = True
8
 
9
  df = pd.read_csv(chunk_file)
10
 
 
 
 
 
 
11
  dm = DeepLakeDocumentsManager(vector_store_path, overwrite=overwrite)
12
  dm.batch_add(df)
13
  zipped_file_path = dm.to_zip()
markdown_parser.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import pandas as pd
4
+ import tiktoken
5
+ from langchain.text_splitter import MarkdownHeaderTextSplitter
6
+
7
+
8
+ def num_tokens_from_string(string: str, encoding_name: str = "cl100k_base") -> int:
9
+ encoding = tiktoken.get_encoding(encoding_name)
10
+ num_tokens = len(encoding.encode(string))
11
+ return num_tokens
12
+
13
+
14
+ def drop_outlier_chunks(df: pd.DataFrame, max_tokens_by_chunk: int = 4500):
15
+ # drops chunks with abnormally high token counts, usually they contain lots of links
16
+ filtered_df = df[df.content.apply(num_tokens_from_string) < max_tokens_by_chunk]
17
+ outliers_df = df[df.content.apply(num_tokens_from_string) >= max_tokens_by_chunk]
18
+ print(f"Dropping {len(df) - len(filtered_df)} outlier chunks")
19
+ print(f"Dropped outliers: {outliers_df.content.to_list()}")
20
+ return filtered_df
21
+
22
+
23
+ def find_md_files(folder_path):
24
+ """Recursively find .md files, extract content and use filename as title."""
25
+ md_files = []
26
+
27
+ for root, _, files in os.walk(folder_path):
28
+ for file in files:
29
+ if file.endswith(".md"):
30
+ file_path = os.path.join(root, file)
31
+ title = os.path.splitext(file)[0]
32
+ with open(file_path, "r", encoding="utf-8") as md_file:
33
+ content = md_file.read()
34
+ md_files.append({"title": title, "content": content})
35
+
36
+ return md_files
37
+
38
+
39
+ def split_string_by_max_words(input_string, max_words):
40
+ words = input_string.split()
41
+ return [" ".join(words[i : i + max_words]) for i in range(0, len(words), max_words)]
42
+
43
+
44
+ if __name__ == "__main__":
45
+ folder_path = "/path/to/folder/with/md_content/"
46
+ folder_path = "/Users/jeremypinto/Downloads/d22d1e98-345f-490d-870e-3b082938741c_Export-0a33c13f-6d42-4a94-8f23-7459e7b2c024"
47
+
48
+ md_files = find_md_files(folder_path)
49
+
50
+ headers_to_split_on = [
51
+ ("#", "#"),
52
+ ("##", "##"),
53
+ ]
54
+
55
+ markdown_splitter = MarkdownHeaderTextSplitter(
56
+ headers_to_split_on=headers_to_split_on
57
+ )
58
+
59
+ chunks = []
60
+
61
+ from tqdm import tqdm
62
+
63
+ for md_file in tqdm(md_files):
64
+ md_title = md_file["title"]
65
+ md_raw_content = md_file["content"]
66
+ md_header_splits = markdown_splitter.split_text(md_raw_content)
67
+
68
+ for split in md_header_splits:
69
+ # add the headers back to the content
70
+ headers = "\n".join(
71
+ [
72
+ k + " " + v
73
+ for k, v in zip(split.metadata.keys(), split.metadata.values())
74
+ ]
75
+ )
76
+
77
+ substrings = split_string_by_max_words(split.page_content, max_words=600)
78
+ for substring in substrings:
79
+ chunk = {
80
+ "title": md_title,
81
+ "content": headers + "\n" + substring,
82
+ "source": "TAI Course",
83
+ "url": "https://learn.activeloop.ai/courses/langchain/",
84
+ }
85
+ chunks.append(chunk)
86
+
87
+ df = pd.DataFrame(chunks)
88
+
89
+ df = drop_outlier_chunks(df, max_tokens_by_chunk=2000)
90
+
91
+ print(f"Exported {len(df)} chunks from {len(md_files)} articles.")
92
+ df.to_csv("langchain_course.csv")