Spaces:
Running
Running
Louis-François Bouchard
Omar Solano
commited on
Commit
·
a5371c1
1
Parent(s):
c622d88
Openai activeloop data (#37)
Browse files* adding openai and activeloop data
* fixing issues with names
* concurrency
* black
* black
* revert to gradio3.50 for concurrency
---------
Co-authored-by: Omar Solano <[email protected]>
- .gitignore +3 -0
- app.py +4 -0
- cfg.py +2 -2
- data/process_csvs_store.py +70 -6
- data/tmp.py +21 -0
- requirements.txt +2 -2
.gitignore
CHANGED
@@ -3,3 +3,6 @@
|
|
3 |
deeplake_store/
|
4 |
.DS_Store
|
5 |
__pycache__/
|
|
|
|
|
|
|
|
3 |
deeplake_store/
|
4 |
.DS_Store
|
5 |
__pycache__/
|
6 |
+
.env
|
7 |
+
env/
|
8 |
+
.vscode/
|
app.py
CHANGED
@@ -34,6 +34,8 @@ AVAILABLE_SOURCES_UI = [
|
|
34 |
"Wikipedia",
|
35 |
"Gen AI 360: LangChain",
|
36 |
"Gen AI 360: LLMs",
|
|
|
|
|
37 |
]
|
38 |
|
39 |
AVAILABLE_SOURCES = [
|
@@ -42,6 +44,8 @@ AVAILABLE_SOURCES = [
|
|
42 |
"wikipedia",
|
43 |
"langchain_course",
|
44 |
"llm_course",
|
|
|
|
|
45 |
]
|
46 |
|
47 |
|
|
|
34 |
"Wikipedia",
|
35 |
"Gen AI 360: LangChain",
|
36 |
"Gen AI 360: LLMs",
|
37 |
+
"Activeloop",
|
38 |
+
"Open AI",
|
39 |
]
|
40 |
|
41 |
AVAILABLE_SOURCES = [
|
|
|
44 |
"wikipedia",
|
45 |
"langchain_course",
|
46 |
"llm_course",
|
47 |
+
"activeloop",
|
48 |
+
"openai",
|
49 |
]
|
50 |
|
51 |
|
cfg.py
CHANGED
@@ -23,7 +23,7 @@ ACTIVELOOP_TOKEN = os.getenv("ACTIVELOOP_TOKEN")
|
|
23 |
if ACTIVELOOP_TOKEN is None:
|
24 |
logger.warning("No activeloop token found, you will not be able to fetch data.")
|
25 |
|
26 |
-
DEEPLAKE_DATASET = os.getenv("DEEPLAKE_DATASET", "
|
27 |
DEEPLAKE_ORG = os.getenv("DEEPLAKE_ORG", "towards_ai")
|
28 |
|
29 |
# if you want to use a local dataset, set the env. variable, it overrides all others
|
@@ -85,7 +85,7 @@ Q:
|
|
85 |
"embedding_model": "text-embedding-ada-002",
|
86 |
"exec_option": "compute_engine",
|
87 |
"use_tql": True,
|
88 |
-
"deep_memory":
|
89 |
"activeloop_token": ACTIVELOOP_TOKEN,
|
90 |
},
|
91 |
documents_answerer_cfg={
|
|
|
23 |
if ACTIVELOOP_TOKEN is None:
|
24 |
logger.warning("No activeloop token found, you will not be able to fetch data.")
|
25 |
|
26 |
+
DEEPLAKE_DATASET = os.getenv("DEEPLAKE_DATASET", "ai-tutor-dataset")
|
27 |
DEEPLAKE_ORG = os.getenv("DEEPLAKE_ORG", "towards_ai")
|
28 |
|
29 |
# if you want to use a local dataset, set the env. variable, it overrides all others
|
|
|
85 |
"embedding_model": "text-embedding-ada-002",
|
86 |
"exec_option": "compute_engine",
|
87 |
"use_tql": True,
|
88 |
+
"deep_memory": False,
|
89 |
"activeloop_token": ACTIVELOOP_TOKEN,
|
90 |
},
|
91 |
documents_answerer_cfg={
|
data/process_csvs_store.py
CHANGED
@@ -3,8 +3,11 @@ import time
|
|
3 |
import os
|
4 |
from buster.documents_manager import DeepLakeDocumentsManager
|
5 |
from deeplake.core.vectorstore import VectorStore
|
|
|
6 |
|
7 |
-
|
|
|
|
|
8 |
DEEPLAKE_ORG = os.getenv("DEEPLAKE_ORG", "towards_ai")
|
9 |
|
10 |
df1 = pd.read_csv("./data/llm_course.csv")
|
@@ -12,7 +15,10 @@ df2 = pd.read_csv("./data/hf_transformers.csv")
|
|
12 |
df3 = pd.read_csv("./data/langchain_course.csv")
|
13 |
df4 = pd.read_csv("./data/filtered_tai_v2.csv")
|
14 |
df5 = pd.read_csv("./data/wiki.csv") # , encoding="ISO-8859-1")
|
|
|
|
|
15 |
|
|
|
16 |
|
17 |
dataset_path = f"hub://{DEEPLAKE_ORG}/{DEEPLAKE_DATASET}"
|
18 |
|
@@ -27,7 +33,8 @@ dm.batch_add(
|
|
27 |
batch_size=3000,
|
28 |
min_time_interval=60,
|
29 |
num_workers=32,
|
30 |
-
|
|
|
31 |
csv_overwrite=False,
|
32 |
)
|
33 |
|
@@ -36,7 +43,8 @@ dm.batch_add(
|
|
36 |
batch_size=3000,
|
37 |
min_time_interval=60,
|
38 |
num_workers=32,
|
39 |
-
|
|
|
40 |
csv_overwrite=False,
|
41 |
)
|
42 |
|
@@ -45,7 +53,8 @@ dm.batch_add(
|
|
45 |
batch_size=3000,
|
46 |
min_time_interval=60,
|
47 |
num_workers=32,
|
48 |
-
|
|
|
49 |
csv_overwrite=False,
|
50 |
)
|
51 |
|
@@ -54,7 +63,8 @@ dm.batch_add(
|
|
54 |
batch_size=3000,
|
55 |
min_time_interval=60,
|
56 |
num_workers=32,
|
57 |
-
|
|
|
58 |
csv_overwrite=False,
|
59 |
)
|
60 |
|
@@ -63,6 +73,60 @@ dm.batch_add(
|
|
63 |
batch_size=3000,
|
64 |
min_time_interval=60,
|
65 |
num_workers=32,
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
csv_overwrite=False,
|
68 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import os
|
4 |
from buster.documents_manager import DeepLakeDocumentsManager
|
5 |
from deeplake.core.vectorstore import VectorStore
|
6 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
7 |
|
8 |
+
# from openai import OpenAI
|
9 |
+
|
10 |
+
DEEPLAKE_DATASET = os.getenv("DEEPLAKE_DATASET", "ai-tutor-dataset")
|
11 |
DEEPLAKE_ORG = os.getenv("DEEPLAKE_ORG", "towards_ai")
|
12 |
|
13 |
df1 = pd.read_csv("./data/llm_course.csv")
|
|
|
15 |
df3 = pd.read_csv("./data/langchain_course.csv")
|
16 |
df4 = pd.read_csv("./data/filtered_tai_v2.csv")
|
17 |
df5 = pd.read_csv("./data/wiki.csv") # , encoding="ISO-8859-1")
|
18 |
+
df6 = pd.read_csv("./data/openai.csv")
|
19 |
+
df7 = pd.read_csv("./data/activeloop.csv")
|
20 |
|
21 |
+
print(len(df1), len(df2), len(df3), len(df4), len(df5), len(df6), len(df7))
|
22 |
|
23 |
dataset_path = f"hub://{DEEPLAKE_ORG}/{DEEPLAKE_DATASET}"
|
24 |
|
|
|
33 |
batch_size=3000,
|
34 |
min_time_interval=60,
|
35 |
num_workers=32,
|
36 |
+
csv_embeddings_filename="embeddings.csv",
|
37 |
+
csv_errors_filename="tmp.csv",
|
38 |
csv_overwrite=False,
|
39 |
)
|
40 |
|
|
|
43 |
batch_size=3000,
|
44 |
min_time_interval=60,
|
45 |
num_workers=32,
|
46 |
+
csv_embeddings_filename="embeddings.csv",
|
47 |
+
csv_errors_filename="tmp.csv",
|
48 |
csv_overwrite=False,
|
49 |
)
|
50 |
|
|
|
53 |
batch_size=3000,
|
54 |
min_time_interval=60,
|
55 |
num_workers=32,
|
56 |
+
csv_embeddings_filename="embeddings.csv",
|
57 |
+
csv_errors_filename="tmp.csv",
|
58 |
csv_overwrite=False,
|
59 |
)
|
60 |
|
|
|
63 |
batch_size=3000,
|
64 |
min_time_interval=60,
|
65 |
num_workers=32,
|
66 |
+
csv_embeddings_filename="embeddings.csv",
|
67 |
+
csv_errors_filename="tmp.csv",
|
68 |
csv_overwrite=False,
|
69 |
)
|
70 |
|
|
|
73 |
batch_size=3000,
|
74 |
min_time_interval=60,
|
75 |
num_workers=32,
|
76 |
+
csv_embeddings_filename="embeddings.csv",
|
77 |
+
csv_errors_filename="tmp.csv",
|
78 |
+
csv_overwrite=False,
|
79 |
+
)
|
80 |
+
|
81 |
+
dm.batch_add(
|
82 |
+
df=df6,
|
83 |
+
batch_size=3000,
|
84 |
+
min_time_interval=60,
|
85 |
+
num_workers=32,
|
86 |
+
csv_embeddings_filename="embeddings.csv",
|
87 |
+
csv_overwrite=False,
|
88 |
+
csv_errors_filename="tmp.csv",
|
89 |
+
)
|
90 |
+
|
91 |
+
dm.batch_add(
|
92 |
+
df=df7,
|
93 |
+
batch_size=3000,
|
94 |
+
min_time_interval=60,
|
95 |
+
num_workers=32,
|
96 |
+
csv_embeddings_filename="embeddings.csv",
|
97 |
+
csv_errors_filename="tmp.csv",
|
98 |
csv_overwrite=False,
|
99 |
)
|
100 |
+
|
101 |
+
|
102 |
+
# client = OpenAI()
|
103 |
+
|
104 |
+
# openai_embeddings = OpenAIEmbeddings()
|
105 |
+
# def get_embedding(text, model="text-embedding-ada-002"):
|
106 |
+
# # Call to OpenAI's API to create the embedding
|
107 |
+
# response = client.embeddings.create(input=[text], model=model)
|
108 |
+
|
109 |
+
# # Extract the embedding data from the response
|
110 |
+
# embedding = response.data[0].embedding
|
111 |
+
|
112 |
+
# # Convert the ndarray to a list
|
113 |
+
# if isinstance(embedding, np.ndarray):
|
114 |
+
# embedding = embedding.tolist()
|
115 |
+
|
116 |
+
# return embedding
|
117 |
+
|
118 |
+
|
119 |
+
# vs = VectorStore(
|
120 |
+
# dataset_path,
|
121 |
+
# runtime='compute_engine',
|
122 |
+
# token=os.environ['ACTIVELOOP_TOKEN']
|
123 |
+
# )
|
124 |
+
|
125 |
+
# data = vs.search(query = "select * where shape(embedding)[0] == 0")
|
126 |
+
|
127 |
+
# vs.update_embedding(embedding_source_tensor = "text",
|
128 |
+
# query = "select * where shape(embedding)[0] == 0",
|
129 |
+
# exec_option = "compute_engine",
|
130 |
+
# embedding_function=get_embedding)
|
131 |
+
|
132 |
+
# data2 = vs.search(query = "select * where shape(embedding)[0] == 0")
|
data/tmp.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import pandas as pd
|
2 |
+
|
3 |
+
# # Load the CSV
|
4 |
+
# df = pd.read_csv('data/wiki.csv')
|
5 |
+
|
6 |
+
|
7 |
+
# # Count the number of unique titles in the 'title' column
|
8 |
+
# unique_titles_count = df['title']
|
9 |
+
|
10 |
+
# print(len(df))
|
11 |
+
|
12 |
+
# # # Remove the 'ranking' column
|
13 |
+
# # df.drop('ranking', axis=1, inplace=True)
|
14 |
+
|
15 |
+
# # # Save the CSV again
|
16 |
+
# # df.to_csv('data/wiki.csv', index=False)
|
17 |
+
|
18 |
+
|
19 |
+
import gradio as gr
|
20 |
+
|
21 |
+
gr.themes.builder()
|
requirements.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
git+https://github.com/jerpint/buster@
|
2 |
-
gradio
|
3 |
deeplake
|
|
|
1 |
+
git+https://github.com/jerpint/buster@better-fallback
|
2 |
+
gradio==3.50.2
|
3 |
deeplake
|