File size: 7,780 Bytes
6d139f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f62184
6d139f1
 
 
 
 
 
 
 
 
 
 
 
 
 
9f62184
6d139f1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from string import punctuation
import numpy as np
import torch
from sklearn.cluster import KMeans
from model.named_entities import get_named_entities

punctuation = [c for c in punctuation if c != "_"]
punctuation += ["“", "–", ",", "…", "”", "–"]


ethnicity_dict_map = {"H'Mông": "HMông",
                      "H'mông": "HMông",
                      "H’mông": "HMông",
                      "H’Mông": "HMông",
                      "H’MÔNG": "HMông",
                      "M'Nông": "MNông",
                      "M'nông": "MNông",
                      "M'NÔNG": "MNông",
                      "M’Nông": "MNông",
                      "M’NÔNG": "MNông",
                      "K’Ho": "KHo",
                      "K’Mẻo": "KMẻo"}


def sub_sentence(sentence):
    sent = []

    start_index = 0
    while start_index < len(sentence):
        idx_list = []
        for p in punctuation:
            idx = sentence.find(p, start_index)
            if idx != -1:
                idx_list.append(idx)

        if len(idx_list) == 0:
            sent.append(sentence[start_index:].strip())
            break

        end_index = min(idx_list)

        subsent = sentence[start_index:end_index].strip()
        if len(subsent) > 0:
            sent.append(subsent)

        start_index = end_index + 1

    return sent


def check_for_stopwords(ngram, stopwords_ls):
    for ngram_elem in ngram.split():
        for w in stopwords_ls:
            if ngram_elem == w:  # or ngram_elem.lower() == w:
                return True
    return False


def compute_ngram_list(segmentised_doc, ngram_n, stopwords_ls, subsentences=True):
    if subsentences:
        output_sub_sentences = []
        for sentence in segmentised_doc:
            output_sub_sentences += sub_sentence(sentence)
    else:
        output_sub_sentences = segmentised_doc

    ngram_list = []
    for sentence in output_sub_sentences:
        sent = sentence.split()
        for i in range(len(sent) - ngram_n + 1):
            ngram = ' '.join(sent[i:i + ngram_n])
            if ngram not in ngram_list and not check_for_stopwords(ngram, stopwords_ls):
                ngram_list.append(ngram)

    final_ngram_list = []
    for ngram in ngram_list:
        contains_number = False
        for char in ngram:
            if char.isnumeric():
                contains_number = True
                break
        if not contains_number:
            final_ngram_list.append(ngram)

    return final_ngram_list


def cosine_similarity(a, b):
    return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))


def get_doc_embeddings(segmentised_doc, tokenizer, phobert, stopwords):
    doc_embedding = torch.zeros(size=(len(segmentised_doc), 768))

    for i, sentence in enumerate(segmentised_doc):
        sent_removed_stopwords = ' '.join([word for word in sentence.split() if word not in stopwords])

        sentence_embedding = tokenizer.encode(sent_removed_stopwords)
        input_ids = torch.tensor([sentence_embedding])
        with torch.no_grad():
            features = phobert(input_ids)

        if i == 0:
            doc_embedding[i, :] = 2 * features.pooler_output.flatten()
        else:
            doc_embedding[i, :] = features.pooler_output.flatten()

    return torch.mean(doc_embedding, axis=0)


def get_segmentised_doc(nlp, rdrsegmenter, title, doc):
    for i, j in ethnicity_dict_map.items():
        if title is not None:
            title = title.replace(i, j)
        doc = doc.replace(i, j)

    segmentised_doc = rdrsegmenter.word_segment(doc)

    if title is not None:
        segmentised_doc = rdrsegmenter.word_segment(title) + rdrsegmenter.word_segment(doc)
    ne_ls = set(get_named_entities(nlp, doc))

    segmentised_doc_ne = []
    for sent in segmentised_doc:
        for ne in ne_ls:
            sent = sent.replace(ne, '_'.join(ne.split()))
        segmentised_doc_ne.append(sent)
    return ne_ls, segmentised_doc_ne


def compute_ngram_embeddings(tokenizer, phobert, ngram_list):
    ngram_embeddings = {}

    for ngram in ngram_list:
        ngram_copy = ngram
        if ngram.isupper():
            ngram_copy = ngram.lower()
        word_embedding = tokenizer.encode(ngram_copy)
        input_ids = torch.tensor([word_embedding])
        with torch.no_grad():
            word_features = phobert(input_ids)

        ngram_embeddings[ngram] = word_features.pooler_output
    return ngram_embeddings


def compute_ngram_similarity(ngram_list, ngram_embeddings, doc_embedding):
    ngram_similarity_dict = {}

    for ngram in ngram_list:
        similarity_score = cosine_similarity(ngram_embeddings[ngram], doc_embedding.T).flatten()[0]
        # similarity_score = normalised_cosine_similarity(ngram_embeddings[ngram], doc_embedding.T).flatten()[0]
        ngram_similarity_dict[ngram] = similarity_score

    return ngram_similarity_dict


def diversify_result_kmeans(ngram_result, ngram_embeddings, top_n=5):
    best_ngrams = sorted(ngram_result, key=ngram_result.get, reverse=True)[:top_n * 4]
    best_ngram_embeddings = np.array([ngram_embeddings[ngram] for ngram in best_ngrams]).squeeze()
    vote = {}

    for niter in range(100):
        kmeans = KMeans(n_clusters=top_n, init='k-means++', random_state=niter * 2, n_init="auto").fit(
            best_ngram_embeddings)
        kmeans_result = kmeans.labels_

        res = {}
        for i in range(len(kmeans_result)):
            if kmeans_result[i] not in res:
                res[kmeans_result[i]] = []
            res[kmeans_result[i]].append((best_ngrams[i], ngram_result[best_ngrams[i]]))

        final_result = [res[k][0] for k in res]
        for keyword in final_result:
            if keyword not in vote:
                vote[keyword] = 0
            vote[keyword] += 1

    diversify_result_ls = sorted(vote, key=vote.get, reverse=True)

    return diversify_result_ls[:top_n]


def remove_duplicates(ngram_result):
    to_remove = set()
    for ngram in ngram_result:

        for ngram2 in ngram_result:
            if ngram not in to_remove and ngram != ngram2 and ngram.lower() == ngram2.lower():
                new_score = np.mean([ngram_result[ngram], ngram_result[ngram2]])

                ngram_result[ngram] = new_score
                to_remove.add(ngram2)

    for ngram in to_remove:
        ngram_result.pop(ngram)
    return ngram_result


def compute_filtered_text(annotator, title, text):
    annotated = annotator.annotate_text(text)
    if title is not None:
        annotated = annotator.annotate_text(title + '. ' + text)
    filtered_sentences = []
    keep_tags = ['N', 'Np', 'V', 'Nc']
    for key in annotated.keys():
        sent = ' '.join([dict_['wordForm'] for dict_ in annotated[key] if dict_['posTag'] in keep_tags])
        filtered_sentences.append(sent)
    return filtered_sentences


def get_candidate_ngrams(segmentised_doc, filtered_segmentised_doc, ngram_n, stopwords_ls):
    # get actual ngrams
    actual_ngram_list = compute_ngram_list(segmentised_doc, ngram_n, stopwords_ls, subsentences=True)

    # get filtered ngrams
    filtered_ngram_list = compute_ngram_list(filtered_segmentised_doc, ngram_n, stopwords_ls,
                                             subsentences=False)

    # get candidate ngrams
    candidate_ngram = [ngram for ngram in filtered_ngram_list if ngram in actual_ngram_list]
    return candidate_ngram


def remove_overlapping_ngrams(ngram_list):
    to_remove = set()
    for ngram1 in ngram_list:
        for ngram2 in ngram_list:
            if len(ngram1.split()) > len(ngram2.split()) and (ngram1.startswith(ngram2) or ngram1.endswith(ngram2)):
                to_remove.add(ngram2)

    for kw in to_remove:
        ngram_list.remove(kw)
    return ngram_list