Spaces:
Sleeping
Sleeping
Commit
·
292f256
1
Parent(s):
18d0753
First Commit
Browse files- .gitattributes +0 -0
- .gitignore +136 -0
- GPT-Shakespeare.pth +3 -0
- README.md +0 -0
- app.py +105 -0
- requirements.txt +3 -0
- transformer.py +323 -0
.gitattributes
CHANGED
File without changes
|
.gitignore
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
*.egg-info/
|
24 |
+
.installed.cfg
|
25 |
+
*.egg
|
26 |
+
|
27 |
+
# PyInstaller
|
28 |
+
# Usually these files are written by a python script from a template
|
29 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
30 |
+
*.manifest
|
31 |
+
*.spec
|
32 |
+
|
33 |
+
# Installer logs
|
34 |
+
pip-log.txt
|
35 |
+
pip-delete-this-directory.txt
|
36 |
+
|
37 |
+
# Unit test / coverage reports
|
38 |
+
htmlcov/
|
39 |
+
.tox/
|
40 |
+
.nox/
|
41 |
+
.coverage
|
42 |
+
.coverage.*
|
43 |
+
.cache
|
44 |
+
nosetests.xml
|
45 |
+
coverage.xml
|
46 |
+
*.cover
|
47 |
+
*.py,cover
|
48 |
+
.hypothesis/
|
49 |
+
.pytest_cache/
|
50 |
+
|
51 |
+
# Translations
|
52 |
+
*.mo
|
53 |
+
*.pot
|
54 |
+
|
55 |
+
# Django stuff:
|
56 |
+
*.log
|
57 |
+
local_settings.py
|
58 |
+
db.sqlite3
|
59 |
+
|
60 |
+
# Flask stuff:
|
61 |
+
instance/
|
62 |
+
.webassets-cache
|
63 |
+
|
64 |
+
# Scrapy stuff:
|
65 |
+
.scrapy
|
66 |
+
|
67 |
+
# Sphinx documentation
|
68 |
+
docs/_build/
|
69 |
+
|
70 |
+
# PyBuilder
|
71 |
+
target/
|
72 |
+
|
73 |
+
# Jupyter Notebook
|
74 |
+
.ipynb_checkpoints
|
75 |
+
|
76 |
+
# IPython
|
77 |
+
profile_default/
|
78 |
+
ipython_config.py
|
79 |
+
|
80 |
+
# pyenv
|
81 |
+
.python-version
|
82 |
+
|
83 |
+
# Celery stuff
|
84 |
+
celerybeat-schedule
|
85 |
+
celerybeat.pid
|
86 |
+
|
87 |
+
# SageMath parsed files
|
88 |
+
*.sage.py
|
89 |
+
|
90 |
+
# Environments
|
91 |
+
.env
|
92 |
+
.venv
|
93 |
+
env/
|
94 |
+
venv/
|
95 |
+
ENV/
|
96 |
+
env.bak/
|
97 |
+
venv.bak/
|
98 |
+
|
99 |
+
# Spyder project settings
|
100 |
+
.spyderproject
|
101 |
+
.spyproject
|
102 |
+
|
103 |
+
# Rope project settings
|
104 |
+
.ropeproject
|
105 |
+
|
106 |
+
# mkdocs documentation
|
107 |
+
/site
|
108 |
+
|
109 |
+
# mypy
|
110 |
+
.mypy_cache/
|
111 |
+
.dmypy.json
|
112 |
+
dmypy.json
|
113 |
+
|
114 |
+
# Pyre type checker
|
115 |
+
.pyre/
|
116 |
+
|
117 |
+
# PyTorch Lightning
|
118 |
+
lightning_logs/
|
119 |
+
|
120 |
+
# VS Code
|
121 |
+
.vscode/
|
122 |
+
|
123 |
+
# MacOS
|
124 |
+
.DS_Store
|
125 |
+
|
126 |
+
# Thumbnails
|
127 |
+
._*
|
128 |
+
|
129 |
+
# Temporary files
|
130 |
+
*.tmp
|
131 |
+
*.temp
|
132 |
+
*.swp
|
133 |
+
*.swo
|
134 |
+
|
135 |
+
# extras
|
136 |
+
*.xlsx
|
GPT-Shakespeare.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1d3090cfad6aa084fd0ab066772d0e4b2cd2d3169f0f043fc6a2e85b64502cf
|
3 |
+
size 548147736
|
README.md
CHANGED
File without changes
|
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import traceback
|
4 |
+
import tiktoken
|
5 |
+
import gradio as gr
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from transformer import GPTConfig, GPT
|
8 |
+
|
9 |
+
|
10 |
+
def load_model(model_path):
|
11 |
+
# model
|
12 |
+
config = GPTConfig()
|
13 |
+
model = GPT(config)
|
14 |
+
|
15 |
+
ckpt = torch.load(os.path.join(model_path), map_location="cpu")
|
16 |
+
model.load_state_dict(ckpt["model_state_dict"])
|
17 |
+
model.to(device)
|
18 |
+
model.eval()
|
19 |
+
|
20 |
+
return model
|
21 |
+
|
22 |
+
|
23 |
+
def generate_text(text, max_length=64, num_return_sequences=2):
|
24 |
+
|
25 |
+
tokenizer = tiktoken.get_encoding('gpt2')
|
26 |
+
x = tokenizer.encode(text)
|
27 |
+
x = torch.tensor(x, dtype=torch.long)
|
28 |
+
x = x.unsqueeze(0)
|
29 |
+
x = x.repeat(num_return_sequences, 1)
|
30 |
+
x = x.to(device)
|
31 |
+
|
32 |
+
for _ in range(max_length):
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
logits, _ = model(x)
|
36 |
+
# take the logits at the last position
|
37 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
38 |
+
# get the probabilities
|
39 |
+
probs = F.softmax(logits, dim=-1)
|
40 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
41 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
42 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
43 |
+
# select a token from the top-k probabilities
|
44 |
+
# note: multinomial does not demand the input to sum to 1
|
45 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
46 |
+
# gather the corresponding indices
|
47 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
48 |
+
# append to the sequence
|
49 |
+
x = torch.cat((x, xcol), dim=1)
|
50 |
+
|
51 |
+
generated_text = []
|
52 |
+
for i in range(num_return_sequences):
|
53 |
+
tokens = x[i, :max_length].tolist()
|
54 |
+
decoded = tokenizer.decode(tokens)
|
55 |
+
generated_text.append("\n>>>\n" + decoded + "\n\n")
|
56 |
+
|
57 |
+
return "".join(generated_text)
|
58 |
+
|
59 |
+
|
60 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
61 |
+
model = load_model(R"GPT-Shakespeare.pth")
|
62 |
+
|
63 |
+
# Define the Gradio interface
|
64 |
+
demo = gr.Interface(
|
65 |
+
fn=generate_text,
|
66 |
+
inputs= [
|
67 |
+
gr.Textbox(
|
68 |
+
label="Input Text",
|
69 |
+
placeholder="Enter the text in style of Coriolanus",
|
70 |
+
lines=5
|
71 |
+
),
|
72 |
+
gr.Slider(minimum=1,
|
73 |
+
maximum=128,
|
74 |
+
step=1,
|
75 |
+
value=20,
|
76 |
+
label="Max Sequence Length"),
|
77 |
+
gr.Slider(minimum=1,
|
78 |
+
maximum=5,
|
79 |
+
step=1,
|
80 |
+
value=2,
|
81 |
+
label="Number of Sequences to Return")
|
82 |
+
],
|
83 |
+
outputs=gr.Textbox(lines=5,
|
84 |
+
placeholder="Generated text will be shown here",
|
85 |
+
label="Generated Text"),
|
86 |
+
title= """<h1 style='text-align: center;'> Text Generation using GPT \
|
87 |
+
<a href='https://github.com/KD1994/session-12-Transformer-from-scratch-pt2' target='_blank'> \
|
88 |
+
<i class='fab fa-github' style='font-size: 24px;'></i></a> \
|
89 |
+
</h1> \
|
90 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css">""",
|
91 |
+
description = "<p style='text-align: center'> Decoder only transformer trained on \"Coriolanus\" by William Shakespeare </p>",
|
92 |
+
examples = [
|
93 |
+
["My noble Coriolanus, temper thy rage. These men hold"],
|
94 |
+
["Wisdom, say’st thou? Counsel, and truth? Nay, Menenius, they are"],
|
95 |
+
["What speaks this man of war and violence?"],
|
96 |
+
["Enough, Coriolanus! Thy words grow wild. What wouldst thou have?"]
|
97 |
+
]
|
98 |
+
)
|
99 |
+
|
100 |
+
# Add error handling to launch
|
101 |
+
try:
|
102 |
+
demo.launch()
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error launching interface: {str(e)}")
|
105 |
+
print(traceback.format_exc())
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
tiktoken
|
transformer.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
|
8 |
+
class CausalSelfAttention(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self, config):
|
11 |
+
super().__init__()
|
12 |
+
assert config.n_embd % config.n_head == 0
|
13 |
+
# key, query, value projections for all heads, but in a batch
|
14 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
15 |
+
# output projection
|
16 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
17 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
18 |
+
# regularization
|
19 |
+
self.n_head = config.n_head
|
20 |
+
self.n_embd = config.n_embd
|
21 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
25 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
26 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
27 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
28 |
+
qkv = self.c_attn(x)
|
29 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
30 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
31 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
32 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
33 |
+
|
34 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
35 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
36 |
+
att = F.softmax(att, dim=-1)
|
37 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
38 |
+
|
39 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
40 |
+
# output projection
|
41 |
+
y = self.c_proj(y)
|
42 |
+
return y
|
43 |
+
|
44 |
+
|
45 |
+
class MLP(nn.Module):
|
46 |
+
|
47 |
+
def __init__(self, config):
|
48 |
+
super().__init__()
|
49 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
50 |
+
self.gelu = nn.GELU(approximate='tanh')
|
51 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
52 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
x = self.c_fc(x)
|
56 |
+
x = self.gelu(x)
|
57 |
+
x = self.c_proj(x)
|
58 |
+
return x
|
59 |
+
|
60 |
+
class Block(nn.Module):
|
61 |
+
|
62 |
+
def __init__(self, config):
|
63 |
+
super().__init__()
|
64 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
65 |
+
self.attn = CausalSelfAttention(config)
|
66 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
67 |
+
self.mlp = MLP(config)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
x = x + self.attn(self.ln_1(x))
|
71 |
+
x = x + self.mlp(self.ln_2(x))
|
72 |
+
return x
|
73 |
+
|
74 |
+
|
75 |
+
@dataclass
|
76 |
+
class GPTConfig:
|
77 |
+
block_size: int = 1024 # max sequence length
|
78 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
79 |
+
n_layer: int = 12 # number of layers
|
80 |
+
n_head: int = 12 # number of heads
|
81 |
+
n_embd: int = 768 # embedding dimension
|
82 |
+
|
83 |
+
|
84 |
+
class GPT(nn.Module):
|
85 |
+
|
86 |
+
def __init__(self, config):
|
87 |
+
super().__init__()
|
88 |
+
self.config = config
|
89 |
+
|
90 |
+
self.transformer = nn.ModuleDict(dict(
|
91 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
92 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
93 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
94 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
95 |
+
))
|
96 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
97 |
+
|
98 |
+
# weight sharing
|
99 |
+
self.transformer.wte.weight = self.lm_head.weight
|
100 |
+
|
101 |
+
# weight initialization
|
102 |
+
self.apply(self._init_weights)
|
103 |
+
|
104 |
+
def _init_weights(self, module):
|
105 |
+
if isinstance(module, nn.Linear):
|
106 |
+
std = 0.02
|
107 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
108 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
109 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
110 |
+
if module.bias is not None:
|
111 |
+
torch.nn.init.zeros_(module.bias)
|
112 |
+
elif isinstance(module, nn.Embedding):
|
113 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
def forward(self, idx, targets=None):
|
118 |
+
# idx is of shape (B, T)
|
119 |
+
B, T = idx.size()
|
120 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
121 |
+
# forward the token and posisition embeddings
|
122 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
123 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
124 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
125 |
+
x = tok_emb + pos_emb
|
126 |
+
# forward the blocks of the transformer
|
127 |
+
for block in self.transformer.h:
|
128 |
+
x = block(x)
|
129 |
+
# forward the final layernorm and the classifier
|
130 |
+
x = self.transformer.ln_f(x)
|
131 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
132 |
+
loss = None
|
133 |
+
if targets is not None:
|
134 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
135 |
+
return logits, loss
|
136 |
+
|
137 |
+
@classmethod
|
138 |
+
def from_pretrained(cls, model_type):
|
139 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
140 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
141 |
+
from transformers import GPT2LMHeadModel
|
142 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
143 |
+
|
144 |
+
# n_layer, n_head and n_embd are determined from model_type
|
145 |
+
config_args = {
|
146 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
147 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
148 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
149 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
150 |
+
}[model_type]
|
151 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
152 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
153 |
+
# create a from-scratch initialized minGPT model
|
154 |
+
config = GPTConfig(**config_args)
|
155 |
+
model = GPT(config)
|
156 |
+
sd = model.state_dict()
|
157 |
+
sd_keys = sd.keys()
|
158 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
159 |
+
|
160 |
+
# init a huggingface/transformers model
|
161 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
162 |
+
sd_hf = model_hf.state_dict()
|
163 |
+
|
164 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
165 |
+
sd_keys_hf = sd_hf.keys()
|
166 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
167 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
168 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
169 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
170 |
+
# this means that we have to transpose these weights when we import them
|
171 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
172 |
+
for k in sd_keys_hf:
|
173 |
+
if any(k.endswith(w) for w in transposed):
|
174 |
+
# special treatment for the Conv1D weights we need to transpose
|
175 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
176 |
+
with torch.no_grad():
|
177 |
+
sd[k].copy_(sd_hf[k].t())
|
178 |
+
else:
|
179 |
+
# vanilla copy over the other parameters
|
180 |
+
assert sd_hf[k].shape == sd[k].shape
|
181 |
+
with torch.no_grad():
|
182 |
+
sd[k].copy_(sd_hf[k])
|
183 |
+
|
184 |
+
return model
|
185 |
+
|
186 |
+
|
187 |
+
@dataclass
|
188 |
+
class Config:
|
189 |
+
vocab_size: int = 50257
|
190 |
+
max_seq_len: int = 2048
|
191 |
+
dim: int = 768
|
192 |
+
num_layers: int = 12
|
193 |
+
num_heads: int = 12
|
194 |
+
dropout: float = 0.1
|
195 |
+
|
196 |
+
class MultiHeadAttention(nn.Module):
|
197 |
+
def __init__(self, config):
|
198 |
+
super().__init__()
|
199 |
+
self.config = config
|
200 |
+
self.n_head = config.num_heads
|
201 |
+
self.n_embd = config.dim
|
202 |
+
|
203 |
+
# Linear projections for Q, K, V
|
204 |
+
self.c_attn = nn.Linear(config.dim, 3 * config.dim) # [n_embd, 3 * n_embd]
|
205 |
+
self.c_proj = nn.Linear(config.dim, config.dim) # [n_embd, n_embd]
|
206 |
+
|
207 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
208 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
209 |
+
|
210 |
+
def forward(self, x):
|
211 |
+
B, T, C = x.size() # [B, T, n_embd]
|
212 |
+
|
213 |
+
# Linear projection and split into Q, K, V
|
214 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) # [B, T, n_embd] each
|
215 |
+
|
216 |
+
# Reshape for multi-head attention
|
217 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head]
|
218 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head]
|
219 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head]
|
220 |
+
|
221 |
+
# Attention scores
|
222 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / (k.size(-1) ** 0.5)) # [B, n_head, T, T]
|
223 |
+
att = F.softmax(att, dim=-1) # [B, n_head, T, T]
|
224 |
+
att = self.attn_dropout(att) # [B, n_head, T, T]
|
225 |
+
|
226 |
+
# Weighted sum of values
|
227 |
+
y = att @ v # [B, n_head, T, n_embd/n_head]
|
228 |
+
|
229 |
+
# Reshape and project
|
230 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # [B, T, n_embd]
|
231 |
+
y = self.c_proj(y) # [B, T, n_embd]
|
232 |
+
y = self.resid_dropout(y) # [B, T, n_embd]
|
233 |
+
|
234 |
+
return y
|
235 |
+
|
236 |
+
class FeedForward(nn.Module):
|
237 |
+
def __init__(self, config):
|
238 |
+
super().__init__()
|
239 |
+
self.c_fc = nn.Linear(config.dim, 4 * config.dim) # [n_embd, 4 * n_embd]
|
240 |
+
self.c_proj = nn.Linear(4 * config.dim, config.dim) # [4 * n_embd, n_embd]
|
241 |
+
self.dropout = nn.Dropout(config.dropout)
|
242 |
+
|
243 |
+
def forward(self, x):
|
244 |
+
x = self.c_fc(x) # [B, T, 4 * n_embd]
|
245 |
+
x = F.gelu(x) # [B, T, 4 * n_embd]
|
246 |
+
x = self.c_proj(x) # [B, T, n_embd]
|
247 |
+
x = self.dropout(x) # [B, T, n_embd]
|
248 |
+
return x
|
249 |
+
|
250 |
+
class TransformerBlock(nn.Module):
|
251 |
+
def __init__(self, config):
|
252 |
+
super().__init__()
|
253 |
+
self.ln_1 = nn.LayerNorm(config.dim) # [n_embd]
|
254 |
+
self.attn = MultiHeadAttention(config)
|
255 |
+
self.ln_2 = nn.LayerNorm(config.dim) # [n_embd]
|
256 |
+
self.mlp = FeedForward(config)
|
257 |
+
|
258 |
+
def forward(self, x):
|
259 |
+
x = x + self.attn(self.ln_1(x)) # [B, T, n_embd]
|
260 |
+
x = x + self.mlp(self.ln_2(x)) # [B, T, n_embd]
|
261 |
+
return x
|
262 |
+
|
263 |
+
class DecoderOnlyTransformer(nn.Module):
|
264 |
+
def __init__(self, config):
|
265 |
+
super().__init__()
|
266 |
+
self.config = config
|
267 |
+
self.wte = nn.Embedding(config.vocab_size, config.dim) # [vocab_size, n_embd]
|
268 |
+
self.wpe = nn.Embedding(config.max_seq_len, config.dim) # [max_seq_len, n_embd]
|
269 |
+
self.drop = nn.Dropout(config.dropout)
|
270 |
+
self.blocks = nn.ModuleList([TransformerBlock(config) for _ in range(config.num_layers)])
|
271 |
+
self.ln_f = nn.LayerNorm(config.dim) # [n_embd]
|
272 |
+
self.lm_head = nn.Linear(config.dim, config.vocab_size, bias=False) # [n_embd, vocab_size]
|
273 |
+
|
274 |
+
self.apply(self._init_weights)
|
275 |
+
|
276 |
+
def _init_weights(self, module):
|
277 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
278 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
279 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
280 |
+
module.bias.data.zero_()
|
281 |
+
elif isinstance(module, nn.LayerNorm):
|
282 |
+
module.bias.data.zero_()
|
283 |
+
module.weight.data.fill_(1.0)
|
284 |
+
|
285 |
+
def forward(self, idx):
|
286 |
+
B, T = idx.size() # [B, T]
|
287 |
+
|
288 |
+
# Positional embeddings
|
289 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device).unsqueeze(0) # [1, T]
|
290 |
+
|
291 |
+
# Token and position embeddings
|
292 |
+
tok_emb = self.wte(idx) # [B, T, n_embd]
|
293 |
+
pos_emb = self.wpe(pos) # [1, T, n_embd]
|
294 |
+
|
295 |
+
# Combine embeddings and apply dropout
|
296 |
+
x = self.drop(tok_emb + pos_emb) # [B, T, n_embd]
|
297 |
+
|
298 |
+
# Transformer blocks
|
299 |
+
for block in self.blocks:
|
300 |
+
x = block(x) # [B, T, n_embd]
|
301 |
+
|
302 |
+
# Final layer norm and linear projection
|
303 |
+
x = self.ln_f(x) # [B, T, n_embd]
|
304 |
+
logits = self.lm_head(x) # [B, T, vocab_size]
|
305 |
+
|
306 |
+
return logits
|
307 |
+
|
308 |
+
# if __name__ == '__main__':
|
309 |
+
# config = Config()
|
310 |
+
# model = DecoderOnlyTransformer(config)
|
311 |
+
|
312 |
+
# # Example usage
|
313 |
+
# batch_size = 4
|
314 |
+
# seq_len = 128
|
315 |
+
|
316 |
+
# # Generate random input
|
317 |
+
# input_ids = torch.randint(0, config.vocab_size, (batch_size, seq_len))
|
318 |
+
|
319 |
+
# # Forward pass
|
320 |
+
# logits = model(input_ids)
|
321 |
+
|
322 |
+
# print("Input shape:", input_ids.shape)
|
323 |
+
# print("Output shape:", logits.shape)
|