import math import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads, but in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd) self.c_proj.NANGPT_SCALE_INIT = 1 # regularization self.n_head = config.n_head self.n_embd = config.n_embd self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) # calculate query, key, values for all heads in batch and move head forward to be the batch dim # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer qkv = self.c_attn(x) q, k, v = qkv.split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) att = F.softmax(att, dim=-1) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.c_proj(y) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) self.gelu = nn.GELU(approximate='tanh') self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = 1 def forward(self, x): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x @dataclass class GPTConfig: block_size: int = 1024 # max sequence length vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token n_layer: int = 12 # number of layers n_head: int = 12 # number of heads n_embd: int = 768 # embedding dimension class GPT(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = nn.LayerNorm(config.n_embd), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # weight sharing self.transformer.wte.weight = self.lm_head.weight # weight initialization self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): std = 0.02 if hasattr(module, 'NANGPT_SCALE_INIT'): std *= (2 * self.config.n_layer) ** -0.5 torch.nn.init.normal_(module.weight, mean = 0.0, std = std) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02) def forward(self, idx, targets=None): # idx is of shape (B, T) B, T = idx.size() assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" # forward the token and posisition embeddings pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T) pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd) tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd) x = tok_emb + pos_emb # forward the blocks of the transformer for block in self.transformer.h: x = block(x) # forward the final layernorm and the classifier x = self.transformer.ln_f(x) logits = self.lm_head(x) # (B, T, vocab_size) loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss @classmethod def from_pretrained(cls, model_type): """Loads pretrained GPT-2 model weights from huggingface""" assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} from transformers import GPT2LMHeadModel print("loading weights from pretrained gpt: %s" % model_type) # n_layer, n_head and n_embd are determined from model_type config_args = { 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params }[model_type] config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints # create a from-scratch initialized minGPT model config = GPTConfig(**config_args) model = GPT(config) sd = model.state_dict() sd_keys = sd.keys() sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param # init a huggingface/transformers model model_hf = GPT2LMHeadModel.from_pretrained(model_type) sd_hf = model_hf.state_dict() # copy while ensuring all of the parameters are aligned and match in names and shapes sd_keys_hf = sd_hf.keys() sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer) transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear # this means that we have to transpose these weights when we import them assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" for k in sd_keys_hf: if any(k.endswith(w) for w in transposed): # special treatment for the Conv1D weights we need to transpose assert sd_hf[k].shape[::-1] == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k].t()) else: # vanilla copy over the other parameters assert sd_hf[k].shape == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k]) return model @dataclass class Config: vocab_size: int = 50257 max_seq_len: int = 2048 dim: int = 768 num_layers: int = 12 num_heads: int = 12 dropout: float = 0.1 class MultiHeadAttention(nn.Module): def __init__(self, config): super().__init__() self.config = config self.n_head = config.num_heads self.n_embd = config.dim # Linear projections for Q, K, V self.c_attn = nn.Linear(config.dim, 3 * config.dim) # [n_embd, 3 * n_embd] self.c_proj = nn.Linear(config.dim, config.dim) # [n_embd, n_embd] self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) def forward(self, x): B, T, C = x.size() # [B, T, n_embd] # Linear projection and split into Q, K, V q, k, v = self.c_attn(x).split(self.n_embd, dim=2) # [B, T, n_embd] each # Reshape for multi-head attention k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head] q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head] v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head] # Attention scores att = (q @ k.transpose(-2, -1)) * (1.0 / (k.size(-1) ** 0.5)) # [B, n_head, T, T] att = F.softmax(att, dim=-1) # [B, n_head, T, T] att = self.attn_dropout(att) # [B, n_head, T, T] # Weighted sum of values y = att @ v # [B, n_head, T, n_embd/n_head] # Reshape and project y = y.transpose(1, 2).contiguous().view(B, T, C) # [B, T, n_embd] y = self.c_proj(y) # [B, T, n_embd] y = self.resid_dropout(y) # [B, T, n_embd] return y class FeedForward(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.dim, 4 * config.dim) # [n_embd, 4 * n_embd] self.c_proj = nn.Linear(4 * config.dim, config.dim) # [4 * n_embd, n_embd] self.dropout = nn.Dropout(config.dropout) def forward(self, x): x = self.c_fc(x) # [B, T, 4 * n_embd] x = F.gelu(x) # [B, T, 4 * n_embd] x = self.c_proj(x) # [B, T, n_embd] x = self.dropout(x) # [B, T, n_embd] return x class TransformerBlock(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.dim) # [n_embd] self.attn = MultiHeadAttention(config) self.ln_2 = nn.LayerNorm(config.dim) # [n_embd] self.mlp = FeedForward(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) # [B, T, n_embd] x = x + self.mlp(self.ln_2(x)) # [B, T, n_embd] return x class DecoderOnlyTransformer(nn.Module): def __init__(self, config): super().__init__() self.config = config self.wte = nn.Embedding(config.vocab_size, config.dim) # [vocab_size, n_embd] self.wpe = nn.Embedding(config.max_seq_len, config.dim) # [max_seq_len, n_embd] self.drop = nn.Dropout(config.dropout) self.blocks = nn.ModuleList([TransformerBlock(config) for _ in range(config.num_layers)]) self.ln_f = nn.LayerNorm(config.dim) # [n_embd] self.lm_head = nn.Linear(config.dim, config.vocab_size, bias=False) # [n_embd, vocab_size] self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def forward(self, idx): B, T = idx.size() # [B, T] # Positional embeddings pos = torch.arange(0, T, dtype=torch.long, device=idx.device).unsqueeze(0) # [1, T] # Token and position embeddings tok_emb = self.wte(idx) # [B, T, n_embd] pos_emb = self.wpe(pos) # [1, T, n_embd] # Combine embeddings and apply dropout x = self.drop(tok_emb + pos_emb) # [B, T, n_embd] # Transformer blocks for block in self.blocks: x = block(x) # [B, T, n_embd] # Final layer norm and linear projection x = self.ln_f(x) # [B, T, n_embd] logits = self.lm_head(x) # [B, T, vocab_size] return logits # if __name__ == '__main__': # config = Config() # model = DecoderOnlyTransformer(config) # # Example usage # batch_size = 4 # seq_len = 128 # # Generate random input # input_ids = torch.randint(0, config.vocab_size, (batch_size, seq_len)) # # Forward pass # logits = model(input_ids) # print("Input shape:", input_ids.shape) # print("Output shape:", logits.shape)