File size: 2,134 Bytes
79cdb88
 
 
 
197cc57
79cdb88
 
 
 
 
197cc57
79cdb88
fd4433f
54d1e27
79cdb88
197cc57
 
79cdb88
 
 
 
197cc57
 
 
 
 
79cdb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d1e27
 
 
 
 
79cdb88
 
54d1e27
79cdb88
 
 
54d1e27
79cdb88
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import torch
import gradio as gr
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer


def load_model(model_path):
    config = PeftConfig.from_pretrained(model_path)

    base_model = AutoModelForCausalLM.from_pretrained(
        config.base_model_name_or_path,
        trust_remote_code=True,
        token=os.environ["HF_TOKEN"],
    )

    base_model.config.use_cache = False
    tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
    tokenizer.pad_token = tokenizer.eos_token

    # Load the Lora model
    model = PeftModel.from_pretrained(
        base_model, 
        model_path,
        low_cpu_mem_usage=True
        )

    return model, tokenizer


def generate_text(prompt):
    prompt = "<user>: " + prompt + " <bot>:"

    batch = tokenizer(
        prompt,
        padding=True,
        truncation=True,
        return_tensors='pt'
    )
    batch = batch.to(device)

    with torch.amp.autocast(device):
        output_tokens = model.generate(
            input_ids = batch.input_ids, 
            max_new_tokens=200,
            temperature=0.7,
            top_p=0.7,
            num_return_sequences=1,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )

    generated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
    
    return generated_text.split("<user>: ")[1].split("<bot>: ")[-1]


device = 'cuda' if torch.cuda.is_available() else 'cpu'
model, tokenizer = load_model(os.path.join(os.getcwd(), "weights"))

iface = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(label="Prompt", 
                   placeholder="Enter your prompt here...",
                   lines=5
                  ),
        ],
    outputs=gr.Textbox(label="Generated Text"),
    title="LLaMA-3.2-3B-Instruct-QLoRA",
    description="LLaMA-3.2-3B-Instruct Finetuned using QLoRA on OpenAssistant/oasst1",
    examples=[
        ["can you describe winter?"],
        ["How about we play a fun game?"],
    ]
)


if __name__ == "__main__":
    iface.launch()