File size: 13,486 Bytes
bac9d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87347e3
bac9d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import torch
import torch.nn.functional as F
from typing import Optional
from torch import nn


class RMSNorm(nn.Module):
    def __init__(self, dim, eps):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        # Root Mean Square Layer Normalization
        rms = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
        return x * rms * self.weight


class RotaryEmbedding(nn.Module):
    def __init__(self, dim, max_seq_len=2048, theta=10000):
        super().__init__()
        self.dim = dim
        self.max_seq_len = max_seq_len
        
        freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("freqs", freqs)

        t = torch.arange(max_seq_len, dtype=self.freqs.dtype)
        freqs = torch.outer(t, self.freqs)

        cos = freqs.cos()
        sin = freqs.sin()
        self.register_buffer('cos', cos)
        self.register_buffer('sin', sin)


    def rotate_half(self, x):
        rot_dim = x.shape[-1]
        x1 = x[..., :rot_dim // 2]
        x2 = x[..., rot_dim // 2:]
        return torch.cat((-x2, x1), dim=-1)

    def apply_rotary_emb(self, t, x):
        rot_dim = self.freqs.shape[-1]
        cos = self.cos[t, :rot_dim]
        sin = self.sin[t, :rot_dim]

        rotated_x = (x[..., :rot_dim] * cos) + (self.rotate_half(x[..., :rot_dim]) * sin)
        if x.shape[-1] > rot_dim:
            rotated_x = torch.cat((rotated_x, x[..., rot_dim:]), dim=-1)
        return rotated_x
    
    def forward(self, x, seq_dim=-2):
        seq_len = x.shape[seq_dim]
        t = torch.arange(seq_len, device=x.device)
        return self.apply_rotary_emb(t, x)


class Attention(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.dim = args.dim
        self.num_heads = args.n_heads
        self.kv_heads = args.n_kv_heads
        self.head_dim = args.dim // args.n_heads
        self.kv_head_dim = args.dim // args.n_kv_heads

        assert self.head_dim * args.n_heads == args.dim, "args.dim must be divisible by args.n_heads"
        assert self.kv_head_dim * args.n_kv_heads == args.dim, "args.dim must be divisible by args.n_kv_heads"

        self.query_proj = nn.Linear(args.dim, args.dim, bias=False)
        self.key_proj = nn.Linear(args.dim, args.n_kv_heads * self.head_dim, bias=False)
        self.value_proj = nn.Linear(args.dim, args.n_kv_heads * self.head_dim, bias=False)
        
        self.rope = RotaryEmbedding(self.head_dim)
        
        self.out_proj = nn.Linear(args.dim, args.dim, bias=False)
        self.dropout = nn.Dropout(args.dropout)

        # # Caching storage (keys and values)
        cached_keys = None
        cached_values = None
        self.register_buffer('cached_keys', cached_keys)
        self.register_buffer('cached_values', cached_values)

    def forward(self, x, mask=None, use_cache=False):
        # # batch_size = x.size(0)
        batch_size, seq_len, C = x.size()
        
        query = self.query_proj(x)
        key = self.key_proj(x)
        value = self.value_proj(x)
        
        # Reshape for attention computation
        query = query.view(batch_size, seq_len, self.num_heads, self.head_dim)
        key = key.view(batch_size, seq_len, self.kv_heads, self.head_dim)
        value = value.view(batch_size, seq_len, self.kv_heads, self.head_dim)
        
        # Transpose for attention computation
        query = query.transpose(1, 2)  # [batch, num_heads, seq_len, head_dim]
        key = key.transpose(1, 2)  # [batch, num_kv_heads, seq_len, head_dim]
        value = value.transpose(1, 2)  # [batch, num_kv_heads, seq_len, head_dim]

        query = self.rope(query)
        key = self.rope(key)

        # # If kv_heads are less than num_heads, repeat them
        # if self.kv_heads < self.num_heads:
        #     key = key.repeat_interleave(self.num_heads // self.kv_heads, dim=1)
        #     value = value.repeat_interleave(self.num_heads // self.kv_heads, dim=1)
        
        # # Compute attention
        # attn_weights = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_dim)
        # if mask is not None:
        #     attn_weights = attn_weights + mask
        # attn_weights = F.softmax(attn_weights, dim=-1)
        
        # # Compute output
        # output = torch.matmul(attn_weights, value)

        # Flash-attn
        output = F.scaled_dot_product_attention(query, key, value, is_causal=True, dropout_p=self.dropout.p, enable_gqa=True)
        
        # Update cache only if using cache
        if use_cache:
            self.cached_keys = key
            self.cached_values = value
        else:
            # Reset cached values during training (to prevent unwanted accumulation)
            self.cached_keys = None
            self.cached_values = None

        output = output.transpose(1, 2).contiguous().view(batch_size, seq_len, -1)  # [batch, seq_len, num_heads * head_dim]
        return self.out_proj(output)

class FeedForward(nn.Module):
    def __init__(self, args):
        """
        Initialize the FeedForward module.

        Args:
            dim (int): Input dimension.
            hidden_dim (int): Hidden dimension of the feedforward layer.    # 2304
            ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.

        Attributes:
            w1 (nn.Linear): Linear transformation for the first layer.
            w2 (nn.Linear): Linear transformation for the second layer.
            w3 (nn.Linear): Linear transformation for the third layer.

        """
        super().__init__()
        self.w1 = nn.Linear(args.dim, args.intermediate_dim, bias=False)
        self.w2 = nn.Linear(args.intermediate_dim, args.dim, bias=False)
        self.w3 = nn.Linear(args.dim, args.intermediate_dim, bias=False)

    def forward(self, x):
        return self.w2(F.silu(self.w1(x)) * self.w3(x))


class TransformerBlock(nn.Module):
    def __init__(self, layer_id: int, args):
        """
        Initialize a TransformerBlock.

        Args:
            layer_id (int): Identifier for the layer.
            args (ModelArgs): Model configuration parameters.

        Attributes:
            n_heads (int): Number of attention heads.
            dim (int): Dimension size of the model.
            head_dim (int): Dimension size of each attention head.
            attention (Attention): Attention module.
            feed_forward (FeedForward): FeedForward module.
            layer_id (int): Identifier for the layer.
            attention_norm (RMSNorm): Layer normalization for attention output.
            ffn_norm (RMSNorm): Layer normalization for feedforward output.

        """
        super().__init__()
        self.n_heads = args.n_heads
        self.dim = args.dim
        self.head_dim = args.dim // args.n_heads
        self.attention = Attention(args)
        self.feed_forward = FeedForward(args)
        self.layer_id = layer_id
        self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
        self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)

    def forward(
        self,
        x: torch.Tensor,
        mask: Optional[torch.Tensor],
        use_cache: bool
    ):
        """
        Perform a forward pass through the TransformerBlock.

        Args:
            x (torch.Tensor): Input tensor.
            mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None.
            use_cache (bool): whether to use kv_cache

        Returns:
            torch.Tensor: Output tensor after applying attention and feedforward layers.

        """
        h = x + self.attention(self.attention_norm(x), mask=mask, use_cache=use_cache)
        out = h + self.feed_forward(self.ffn_norm(h))
        return out


class Transformer(nn.Module):
    def __init__(self, args):
        """
        Initialize a Transformer model.

        Args:
            args (ModelArgs): Model configuration parameters.

        Attributes:
            args (ModelArgs): Model configuration parameters.
            vocab_size (int): Vocabulary size.
            n_layers (int): Number of layers in the model.
            tok_embeddings (nn.Embedding): Token embeddings.
            layers (torch.nn.ModuleList): List of Transformer blocks.
            norm (RMSNorm): Layer normalization for the model output.
            output (nn.Linear): Linear layer for final output.

        """
        super().__init__()
        self.args = args
        self.vocab_size = args.vocab_size
        self.n_layers = args.n_layers

        self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)

        self.layers = torch.nn.ModuleList()
        for layer_id in range(args.n_layers):
            self.layers.append(TransformerBlock(layer_id, args))

        self.norm = RMSNorm(args.dim, eps=args.norm_eps)
        # self.output = nn.Linear(
        #     args.dim, args.vocab_size, bias=False
        # )

        # # weight sharing
        # self.output.weight = self.tok_embeddings.weight

        # weight initialization
        self.apply(self._init_weights)


    def _init_weights(self, module):
        std = self.args.init_scale
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            # if module.bias is not None:
            #     module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)


    def forward(self, tokens: torch.Tensor, mask: torch.Tensor = None, use_cache: bool = False):
        """
        Perform a forward pass through the Transformer model.

        Args:
            tokens (torch.Tensor): Input token indices.
            mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None.
            use_cache (bool): whether to use kv_cache

        Returns:
            torch.Tensor: Output logits after applying the Transformer model.

        """
        _, seqlen = tokens.shape
        h = self.tok_embeddings(tokens)

        if mask is None:
            mask = torch.triu(torch.ones((seqlen, seqlen), 
                                         dtype=torch.bool, 
                                         device=tokens.device), 
                              diagonal=1)
            mask = mask.unsqueeze(0).unsqueeze(0)
            mask = mask * -1e4
        
        for layer in self.layers:
            h = layer(h, mask, use_cache)
        h = self.norm(h)
        # output = self.output(h).float()
        output = F.linear(h, self.tok_embeddings.weight)
        return output

    def generate(self, 
        input_ids, 
        max_length, 
        min_length=None,
        num_return_sequences=1, 
        pad_token_id=None,
        do_sample=True,
        temperature=0.8,
        top_k=50,
        top_p=0.95
    ):
        self.eval()
        # batch_size = input_ids.shape[0]
        min_length = min_length if min_length is not None else input_ids.shape[1]
                   
        with torch.no_grad():
            for ret_seq in range(num_return_sequences):
                print(f"Sequence #{ret_seq + 1}:")
                for _ in range(max_length - input_ids.shape[1]):
                    outputs = self(input_ids, use_cache=True)
                    next_token_logits = outputs[:, -1, :]
                    
                    # Apply temperature
                    next_token_logits = next_token_logits / temperature
                    
                    # Apply top-k filtering
                    if top_k > 0:
                        indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
                        next_token_logits[indices_to_remove] = float('-inf')
                    
                    # Apply top-p (nucleus) filtering
                    if top_p < 1.0:
                        sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
                        cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
                        sorted_indices_to_remove = cumulative_probs > top_p
                        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
                        sorted_indices_to_remove[..., 0] = 0
                        indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
                        next_token_logits[indices_to_remove] = float('-inf')
                    
                    # Sample from the filtered distribution
                    if do_sample:
                        probs = torch.softmax(next_token_logits, dim=-1)
                        next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
                    else:
                        next_tokens = torch.argmax(next_token_logits, dim=-1)
                    
                    input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=-1)
                    
                    # Stop if all sequences have hit the pad token
                    if pad_token_id is not None and (next_tokens == pad_token_id).all():
                        break
                    
                    # Stop if we've reached min_length
                    if input_ids.shape[1] < min_length:
                        continue
                    
        return input_ids