Spaces:
Sleeping
Sleeping
File size: 13,486 Bytes
bac9d3f 87347e3 bac9d3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import torch
import torch.nn.functional as F
from typing import Optional
from torch import nn
class RMSNorm(nn.Module):
def __init__(self, dim, eps):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
# Root Mean Square Layer Normalization
rms = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
return x * rms * self.weight
class RotaryEmbedding(nn.Module):
def __init__(self, dim, max_seq_len=2048, theta=10000):
super().__init__()
self.dim = dim
self.max_seq_len = max_seq_len
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("freqs", freqs)
t = torch.arange(max_seq_len, dtype=self.freqs.dtype)
freqs = torch.outer(t, self.freqs)
cos = freqs.cos()
sin = freqs.sin()
self.register_buffer('cos', cos)
self.register_buffer('sin', sin)
def rotate_half(self, x):
rot_dim = x.shape[-1]
x1 = x[..., :rot_dim // 2]
x2 = x[..., rot_dim // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_emb(self, t, x):
rot_dim = self.freqs.shape[-1]
cos = self.cos[t, :rot_dim]
sin = self.sin[t, :rot_dim]
rotated_x = (x[..., :rot_dim] * cos) + (self.rotate_half(x[..., :rot_dim]) * sin)
if x.shape[-1] > rot_dim:
rotated_x = torch.cat((rotated_x, x[..., rot_dim:]), dim=-1)
return rotated_x
def forward(self, x, seq_dim=-2):
seq_len = x.shape[seq_dim]
t = torch.arange(seq_len, device=x.device)
return self.apply_rotary_emb(t, x)
class Attention(nn.Module):
def __init__(self, args):
super().__init__()
self.dim = args.dim
self.num_heads = args.n_heads
self.kv_heads = args.n_kv_heads
self.head_dim = args.dim // args.n_heads
self.kv_head_dim = args.dim // args.n_kv_heads
assert self.head_dim * args.n_heads == args.dim, "args.dim must be divisible by args.n_heads"
assert self.kv_head_dim * args.n_kv_heads == args.dim, "args.dim must be divisible by args.n_kv_heads"
self.query_proj = nn.Linear(args.dim, args.dim, bias=False)
self.key_proj = nn.Linear(args.dim, args.n_kv_heads * self.head_dim, bias=False)
self.value_proj = nn.Linear(args.dim, args.n_kv_heads * self.head_dim, bias=False)
self.rope = RotaryEmbedding(self.head_dim)
self.out_proj = nn.Linear(args.dim, args.dim, bias=False)
self.dropout = nn.Dropout(args.dropout)
# # Caching storage (keys and values)
cached_keys = None
cached_values = None
self.register_buffer('cached_keys', cached_keys)
self.register_buffer('cached_values', cached_values)
def forward(self, x, mask=None, use_cache=False):
# # batch_size = x.size(0)
batch_size, seq_len, C = x.size()
query = self.query_proj(x)
key = self.key_proj(x)
value = self.value_proj(x)
# Reshape for attention computation
query = query.view(batch_size, seq_len, self.num_heads, self.head_dim)
key = key.view(batch_size, seq_len, self.kv_heads, self.head_dim)
value = value.view(batch_size, seq_len, self.kv_heads, self.head_dim)
# Transpose for attention computation
query = query.transpose(1, 2) # [batch, num_heads, seq_len, head_dim]
key = key.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim]
value = value.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim]
query = self.rope(query)
key = self.rope(key)
# # If kv_heads are less than num_heads, repeat them
# if self.kv_heads < self.num_heads:
# key = key.repeat_interleave(self.num_heads // self.kv_heads, dim=1)
# value = value.repeat_interleave(self.num_heads // self.kv_heads, dim=1)
# # Compute attention
# attn_weights = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_dim)
# if mask is not None:
# attn_weights = attn_weights + mask
# attn_weights = F.softmax(attn_weights, dim=-1)
# # Compute output
# output = torch.matmul(attn_weights, value)
# Flash-attn
output = F.scaled_dot_product_attention(query, key, value, is_causal=True, dropout_p=self.dropout.p, enable_gqa=True)
# Update cache only if using cache
if use_cache:
self.cached_keys = key
self.cached_values = value
else:
# Reset cached values during training (to prevent unwanted accumulation)
self.cached_keys = None
self.cached_values = None
output = output.transpose(1, 2).contiguous().view(batch_size, seq_len, -1) # [batch, seq_len, num_heads * head_dim]
return self.out_proj(output)
class FeedForward(nn.Module):
def __init__(self, args):
"""
Initialize the FeedForward module.
Args:
dim (int): Input dimension.
hidden_dim (int): Hidden dimension of the feedforward layer. # 2304
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
Attributes:
w1 (nn.Linear): Linear transformation for the first layer.
w2 (nn.Linear): Linear transformation for the second layer.
w3 (nn.Linear): Linear transformation for the third layer.
"""
super().__init__()
self.w1 = nn.Linear(args.dim, args.intermediate_dim, bias=False)
self.w2 = nn.Linear(args.intermediate_dim, args.dim, bias=False)
self.w3 = nn.Linear(args.dim, args.intermediate_dim, bias=False)
def forward(self, x):
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args):
"""
Initialize a TransformerBlock.
Args:
layer_id (int): Identifier for the layer.
args (ModelArgs): Model configuration parameters.
Attributes:
n_heads (int): Number of attention heads.
dim (int): Dimension size of the model.
head_dim (int): Dimension size of each attention head.
attention (Attention): Attention module.
feed_forward (FeedForward): FeedForward module.
layer_id (int): Identifier for the layer.
attention_norm (RMSNorm): Layer normalization for attention output.
ffn_norm (RMSNorm): Layer normalization for feedforward output.
"""
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.feed_forward = FeedForward(args)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor],
use_cache: bool
):
"""
Perform a forward pass through the TransformerBlock.
Args:
x (torch.Tensor): Input tensor.
mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None.
use_cache (bool): whether to use kv_cache
Returns:
torch.Tensor: Output tensor after applying attention and feedforward layers.
"""
h = x + self.attention(self.attention_norm(x), mask=mask, use_cache=use_cache)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
def __init__(self, args):
"""
Initialize a Transformer model.
Args:
args (ModelArgs): Model configuration parameters.
Attributes:
args (ModelArgs): Model configuration parameters.
vocab_size (int): Vocabulary size.
n_layers (int): Number of layers in the model.
tok_embeddings (nn.Embedding): Token embeddings.
layers (torch.nn.ModuleList): List of Transformer blocks.
norm (RMSNorm): Layer normalization for the model output.
output (nn.Linear): Linear layer for final output.
"""
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.n_layers = args.n_layers
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
self.layers = torch.nn.ModuleList()
for layer_id in range(args.n_layers):
self.layers.append(TransformerBlock(layer_id, args))
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
# self.output = nn.Linear(
# args.dim, args.vocab_size, bias=False
# )
# # weight sharing
# self.output.weight = self.tok_embeddings.weight
# weight initialization
self.apply(self._init_weights)
def _init_weights(self, module):
std = self.args.init_scale
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
# if module.bias is not None:
# module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
def forward(self, tokens: torch.Tensor, mask: torch.Tensor = None, use_cache: bool = False):
"""
Perform a forward pass through the Transformer model.
Args:
tokens (torch.Tensor): Input token indices.
mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None.
use_cache (bool): whether to use kv_cache
Returns:
torch.Tensor: Output logits after applying the Transformer model.
"""
_, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
if mask is None:
mask = torch.triu(torch.ones((seqlen, seqlen),
dtype=torch.bool,
device=tokens.device),
diagonal=1)
mask = mask.unsqueeze(0).unsqueeze(0)
mask = mask * -1e4
for layer in self.layers:
h = layer(h, mask, use_cache)
h = self.norm(h)
# output = self.output(h).float()
output = F.linear(h, self.tok_embeddings.weight)
return output
def generate(self,
input_ids,
max_length,
min_length=None,
num_return_sequences=1,
pad_token_id=None,
do_sample=True,
temperature=0.8,
top_k=50,
top_p=0.95
):
self.eval()
# batch_size = input_ids.shape[0]
min_length = min_length if min_length is not None else input_ids.shape[1]
with torch.no_grad():
for ret_seq in range(num_return_sequences):
print(f"Sequence #{ret_seq + 1}:")
for _ in range(max_length - input_ids.shape[1]):
outputs = self(input_ids, use_cache=True)
next_token_logits = outputs[:, -1, :]
# Apply temperature
next_token_logits = next_token_logits / temperature
# Apply top-k filtering
if top_k > 0:
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
next_token_logits[indices_to_remove] = float('-inf')
# Apply top-p (nucleus) filtering
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
next_token_logits[indices_to_remove] = float('-inf')
# Sample from the filtered distribution
if do_sample:
probs = torch.softmax(next_token_logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(next_token_logits, dim=-1)
input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=-1)
# Stop if all sequences have hit the pad token
if pad_token_id is not None and (next_tokens == pad_token_id).all():
break
# Stop if we've reached min_length
if input_ids.shape[1] < min_length:
continue
return input_ids
|