Spaces:
Runtime error
Runtime error
File size: 5,684 Bytes
0b360c1 1167cb4 0b360c1 1167cb4 59083bb 0b360c1 1167cb4 0b360c1 1167cb4 0b360c1 1167cb4 0b360c1 1167cb4 0b360c1 1167cb4 0b360c1 1167cb4 0b360c1 59083bb 0b360c1 59083bb 0b360c1 59083bb 0b360c1 59083bb 0b360c1 59083bb 0b360c1 59083bb 1167cb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SBERT consime similarity metric."""
import evaluate
import datasets
import torch
import torch.nn as nn
from transformers import AutoTokenizer, BertModel
_CITATION = """\
@article{Reimers2019,
archivePrefix = {arXiv},
arxivId = {1908.10084},
author = {Reimers, Nils and Gurevych, Iryna},
doi = {10.18653/v1/d19-1410},
eprint = {1908.10084},
isbn = {9781950737901},
journal = {EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference},
pages = {3982--3992},
title = {{Sentence-BERT: Sentence embeddings using siamese BERT-networks}},
year = {2019}
}
"""
_DESCRIPTION = """\
Use SBERT to produce embedding and score the similarity by cosine similarity
"""
_KWARGS_DESCRIPTION = """
Calculates how semantic similarity are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
score: description of the first score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> sbert_cosine = evaluate.load("transZ/sbert_cosine")
>>> results = my_new_module.compute(references=["Nice to meet you"], predictions=["It is my pleasure to meet you"])
>>> print(results)
{'score': 0.85}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class sbert_cosine(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=[
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"),
}
),
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
],
# Homepage of the module for documentation
homepage="http://sbert.net",
# Additional links to the codebase or references
codebase_urls=["https://github.com/UKPLab/sentence-transformers"],
reference_urls=["https://github.com/UKPLab/sentence-transformers"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _compute(self, predictions, references, model_type='sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2'):
"""Returns the scores"""
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def batch_to_device(batch, target_device: device):
"""
send a pytorch batch to a device (CPU/GPU)
"""
for key in batch:
if isinstance(batch[key], torch.Tensor):
batch[key] = batch[key].to(target_device)
return batch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(model_type)
model = BertModel.from_pretrained(model_type)
model = model.to(device)
cosine = nn.CosineSimilarity()
def calculate(x: str, y: str):
encoded_input = tokenizer([x, y], padding=True, truncation=True, return_tensors='pt')
encoded_input = batch_to_device(encode_input, device)
model_output = model(**encoded_input)
embeds = mean_pooling(model_output, encoded_input['attention_mask'])
res = cosine(embeds[0, :], embeds[1, :]).item()
return res
with torch.no_grad():
score = torch.mean([calculate(pred, ref) for pred, ref in zip(predictions, references)]).item()
return {
"score": score,
}
|