Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,24 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
-
from huggingface_hub import HfApi, RepositoryNotFoundError
|
4 |
from diffusers import DiffusionPipeline
|
5 |
|
6 |
-
# Проверка доступности модели на Hugging Face Hub
|
7 |
-
def is_model_available(model_id):
|
8 |
-
try:
|
9 |
-
api = HfApi()
|
10 |
-
api.model_info(model_id)
|
11 |
-
return True
|
12 |
-
except RepositoryNotFoundError:
|
13 |
-
return False
|
14 |
-
except Exception:
|
15 |
-
return False
|
16 |
-
|
17 |
-
def validate_model(model_id):
|
18 |
-
if not model_id:
|
19 |
-
raise ValueError("Необходимо указать модель")
|
20 |
-
|
21 |
-
if not is_model_available(model_id):
|
22 |
-
raise ValueError(f"Модель '{model_id}' не найдена на Hugging Face Hub")
|
23 |
-
|
24 |
-
if not any(x in model_id.lower() for x in ["stable-diffusion", "sdxl"]):
|
25 |
-
raise ValueError("Поддерживаются только Stable Diffusion и SDXL модели")
|
26 |
-
|
27 |
-
# Инициализация устройства
|
28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
torch.cuda.empty_cache()
|
42 |
-
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
43 |
-
pipe = pipe.to(device)
|
44 |
-
current_model = model_id
|
45 |
-
return pipe
|
46 |
|
47 |
def infer(
|
48 |
-
|
49 |
prompt,
|
50 |
negative_prompt,
|
51 |
seed,
|
@@ -55,40 +28,38 @@ def infer(
|
|
55 |
num_inference_steps,
|
56 |
progress=gr.Progress(track_tqdm=True),
|
57 |
):
|
58 |
-
|
59 |
-
# Загрузка и проверка модели
|
60 |
-
pipeline = load_pipeline(model_id)
|
61 |
-
|
62 |
-
# Генерация изображения
|
63 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
64 |
-
|
65 |
-
result = pipeline(
|
66 |
-
prompt=prompt,
|
67 |
-
negative_prompt=negative_prompt,
|
68 |
-
width=width,
|
69 |
-
height=height,
|
70 |
-
guidance_scale=guidance_scale,
|
71 |
-
num_inference_steps=num_inference_steps,
|
72 |
-
generator=generator,
|
73 |
-
).images[0]
|
74 |
-
|
75 |
-
return result, seed
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
examples = [
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
]
|
93 |
|
94 |
css = """
|
@@ -100,58 +71,81 @@ css = """
|
|
100 |
|
101 |
with gr.Blocks(css=css) as demo:
|
102 |
with gr.Column(elem_id="col-container"):
|
103 |
-
gr.Markdown("#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
scale=3
|
112 |
-
)
|
113 |
-
|
114 |
-
prompt = gr.Textbox(
|
115 |
-
label="Промпт",
|
116 |
-
placeholder="Введите описание изображения...",
|
117 |
-
lines=2
|
118 |
)
|
119 |
|
120 |
-
negative_prompt = gr.
|
121 |
-
label="
|
122 |
-
|
123 |
-
|
|
|
124 |
)
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
height = gr.Slider(256, 1024, value=512, step=64, label="Высота")
|
134 |
-
|
135 |
-
num_inference_steps = gr.Slider(1, 100, value=20, step=1, label="Шаги генерации")
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
examples=examples,
|
144 |
-
inputs=[model_id, prompt],
|
145 |
-
outputs=[output_image, used_seed],
|
146 |
-
fn=infer,
|
147 |
-
cache_examples=True,
|
148 |
-
label="Примеры"
|
149 |
)
|
150 |
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
fn=infer,
|
153 |
inputs=[
|
154 |
-
|
155 |
prompt,
|
156 |
negative_prompt,
|
157 |
seed,
|
@@ -160,8 +154,8 @@ with gr.Blocks(css=css) as demo:
|
|
160 |
guidance_scale,
|
161 |
num_inference_steps,
|
162 |
],
|
163 |
-
outputs=[
|
164 |
)
|
165 |
|
166 |
if __name__ == "__main__":
|
167 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
import torch
|
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
model_repo_id = "stabilityai/sdxl-turbo" # Текущая/последняя загруженная модель
|
8 |
+
if torch.cuda.is_available():
|
9 |
+
torch_dtype = torch.float16
|
10 |
+
else:
|
11 |
+
torch_dtype = torch.float32
|
12 |
+
|
13 |
+
# Изначально загружаем модель по умолчанию
|
14 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
15 |
+
pipe = pipe.to(device)
|
16 |
+
|
17 |
+
MAX_SEED = np.iinfo(np.int32).max
|
18 |
+
MAX_IMAGE_SIZE = 1024
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def infer(
|
21 |
+
model,
|
22 |
prompt,
|
23 |
negative_prompt,
|
24 |
seed,
|
|
|
28 |
num_inference_steps,
|
29 |
progress=gr.Progress(track_tqdm=True),
|
30 |
):
|
31 |
+
global model_repo_id, pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Проверяем, нужно ли менять модель
|
34 |
+
if model != model_repo_id:
|
35 |
+
try:
|
36 |
+
# Пробуем загрузить новую модель
|
37 |
+
new_pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
|
38 |
+
new_pipe = new_pipe.to(device)
|
39 |
+
# Если успешно, то обновляем pipe и модель
|
40 |
+
pipe = new_pipe
|
41 |
+
model_repo_id = model
|
42 |
+
except Exception as e:
|
43 |
+
raise gr.Error(f"Не удалось загрузить модель {model}. Ошибка: {str(e)}")
|
44 |
+
|
45 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
46 |
+
|
47 |
+
image = pipe(
|
48 |
+
prompt=prompt,
|
49 |
+
negative_prompt=negative_prompt,
|
50 |
+
guidance_scale=guidance_scale,
|
51 |
+
num_inference_steps=num_inference_steps,
|
52 |
+
width=width,
|
53 |
+
height=height,
|
54 |
+
generator=generator,
|
55 |
+
).images[0]
|
56 |
+
|
57 |
+
return image, seed
|
58 |
|
59 |
examples = [
|
60 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
61 |
+
"An astronaut riding a green horse",
|
62 |
+
"A delicious ceviche cheesecake slice",
|
63 |
]
|
64 |
|
65 |
css = """
|
|
|
71 |
|
72 |
with gr.Blocks(css=css) as demo:
|
73 |
with gr.Column(elem_id="col-container"):
|
74 |
+
gr.Markdown(" # Text-to-Image App")
|
75 |
+
|
76 |
+
# Вместо выпадающего списка — текстовое поле для ввода модели
|
77 |
+
model = gr.Textbox(
|
78 |
+
label="Model name or path",
|
79 |
+
value="stabilityai/sdxl-turbo", # Значение по умолчанию
|
80 |
+
interactive=True
|
81 |
+
)
|
82 |
|
83 |
+
prompt = gr.Text(
|
84 |
+
label="Prompt",
|
85 |
+
show_label=False,
|
86 |
+
max_lines=1,
|
87 |
+
placeholder="Enter your prompt",
|
88 |
+
container=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
|
91 |
+
negative_prompt = gr.Text(
|
92 |
+
label="Negative prompt",
|
93 |
+
max_lines=1,
|
94 |
+
placeholder="Enter a negative prompt",
|
95 |
+
visible=True,
|
96 |
)
|
97 |
|
98 |
+
seed = gr.Slider(
|
99 |
+
label="Seed",
|
100 |
+
minimum=0,
|
101 |
+
maximum=MAX_SEED,
|
102 |
+
step=1,
|
103 |
+
value=42,
|
104 |
+
)
|
|
|
|
|
|
|
105 |
|
106 |
+
guidance_scale = gr.Slider(
|
107 |
+
label="Guidance scale",
|
108 |
+
minimum=0.0,
|
109 |
+
maximum=10.0,
|
110 |
+
step=0.1,
|
111 |
+
value=7.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
)
|
113 |
|
114 |
+
num_inference_steps = gr.Slider(
|
115 |
+
label="Number of inference steps",
|
116 |
+
minimum=1,
|
117 |
+
maximum=50,
|
118 |
+
step=1,
|
119 |
+
value=20,
|
120 |
+
)
|
121 |
+
|
122 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
123 |
+
result = gr.Image(label="Result", show_label=False)
|
124 |
+
|
125 |
+
with gr.Accordion("Advanced Settings", open=False):
|
126 |
+
with gr.Row():
|
127 |
+
width = gr.Slider(
|
128 |
+
label="Width",
|
129 |
+
minimum=256,
|
130 |
+
maximum=MAX_IMAGE_SIZE,
|
131 |
+
step=32,
|
132 |
+
value=1024,
|
133 |
+
)
|
134 |
+
height = gr.Slider(
|
135 |
+
label="Height",
|
136 |
+
minimum=256,
|
137 |
+
maximum=MAX_IMAGE_SIZE,
|
138 |
+
step=32,
|
139 |
+
value=1024,
|
140 |
+
)
|
141 |
+
|
142 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
143 |
+
|
144 |
+
gr.on(
|
145 |
+
triggers=[run_button.click, prompt.submit],
|
146 |
fn=infer,
|
147 |
inputs=[
|
148 |
+
model,
|
149 |
prompt,
|
150 |
negative_prompt,
|
151 |
seed,
|
|
|
154 |
guidance_scale,
|
155 |
num_inference_steps,
|
156 |
],
|
157 |
+
outputs=[result, seed],
|
158 |
)
|
159 |
|
160 |
if __name__ == "__main__":
|
161 |
+
demo.launch()
|