trashchenkov commited on
Commit
bfabfc6
·
verified ·
1 Parent(s): 288a470

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +115 -106
app.py CHANGED
@@ -1,60 +1,90 @@
1
  import gradio as gr
2
  import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
 
 
 
 
 
 
19
 
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
  def infer(
 
26
  prompt,
27
  negative_prompt,
28
  seed,
29
- randomize_seed,
30
  width,
31
  height,
32
  guidance_scale,
33
  num_inference_steps,
34
  progress=gr.Progress(track_tqdm=True),
35
  ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
  css = """
@@ -66,89 +96,68 @@ css = """
66
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
  with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
  )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
  with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
  with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
 
139
  fn=infer,
140
  inputs=[
 
141
  prompt,
142
  negative_prompt,
143
  seed,
144
- randomize_seed,
145
  width,
146
  height,
147
  guidance_scale,
148
  num_inference_steps,
149
  ],
150
- outputs=[result, seed],
151
  )
152
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
 
 
 
 
3
  import torch
4
+ from huggingface_hub import list_models, ModelFilter
5
+ from diffusers import DiffusionPipeline
6
 
7
+ # Проверка доступности модели на Hugging Face Hub
8
+ def is_model_available(model_id):
9
+ try:
10
+ models = list_models(filter=ModelFilter(model_name=model_id))
11
+ return len(models) > 0
12
+ except Exception:
13
+ return False
14
+
15
+ def validate_model(model_id):
16
+ if not model_id:
17
+ raise ValueError("Необходимо указать модель")
18
+
19
+ if not is_model_available(model_id):
20
+ raise ValueError(f"Модель '{model_id}' не найдена на Hugging Face Hub")
21
+
22
+ # Дополнительные проверки модели (можно настроить)
23
+ if not ("stable-diffusion" in model_id.lower() or "sdxl" in model_id.lower()):
24
+ raise ValueError("Поддерживаются только Stable Diffusion и SDXL модели")
25
+
26
+ # Инициализация устройства
27
  device = "cuda" if torch.cuda.is_available() else "cpu"
28
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
29
 
30
+ # Глобальные переменные
31
+ current_model = None
32
+ pipe = None
 
33
 
34
+ def load_pipeline(model_id):
35
+ global pipe, current_model
36
+ if model_id != current_model:
37
+ validate_model(model_id)
38
+ pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
39
+ pipe = pipe.to(device)
40
+ current_model = model_id
41
+ return pipe
42
 
 
 
 
 
 
43
  def infer(
44
+ model_id,
45
  prompt,
46
  negative_prompt,
47
  seed,
 
48
  width,
49
  height,
50
  guidance_scale,
51
  num_inference_steps,
52
  progress=gr.Progress(track_tqdm=True),
53
  ):
54
+ try:
55
+ # Загрузка и проверка модели
56
+ pipeline = load_pipeline(model_id)
57
+
58
+ # Генерация изображения
59
+ generator = torch.Generator(device=device).manual_seed(seed)
60
+
61
+ result = pipeline(
62
+ prompt=prompt,
63
+ negative_prompt=negative_prompt,
64
+ width=width,
65
+ height=height,
66
+ guidance_scale=guidance_scale,
67
+ num_inference_steps=num_inference_steps,
68
+ generator=generator,
69
+ ).images[0]
70
+
71
+ return result, seed
72
+
73
+ except Exception as e:
74
+ raise gr.Error(f"Ошибка генерации: {str(e)}")
75
+
76
+ # Список доступных моделей по умолчанию
77
+ available_models = [
78
+ "stabilityai/stable-diffusion-2-1",
79
+ "stabilityai/sdxl-turbo",
80
+ "runwayml/stable-diffusion-v1-5",
81
+ "prompthero/openjourney-v4"
82
+ ]
83
 
84
  examples = [
85
+ ["stabilityai/sdxl-turbo", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"],
86
+ ["runwayml/stable-diffusion-v1-5", "An astronaut riding a green horse"],
87
+ ["prompthero/openjourney-v4", "A cyberpunk cityscape at night, neon lights, rain"],
88
  ]
89
 
90
  css = """
 
96
 
97
  with gr.Blocks(css=css) as demo:
98
  with gr.Column(elem_id="col-container"):
99
+ gr.Markdown("# 🎨 Text-to-Image Generator")
100
+
101
  with gr.Row():
102
+ model_id = gr.Dropdown(
103
+ label="Выберите или введите модель",
104
+ choices=available_models,
105
+ value="stabilityai/sdxl-turbo",
106
+ allow_custom_value=True,
107
+ scale=3
108
  )
109
+
110
+ prompt = gr.Textbox(
111
+ label="Промпт",
112
+ placeholder="Введите описание изображения...",
113
+ lines=2
114
+ )
115
+
116
+ negative_prompt = gr.Textbox(
117
+ label="Негативный промпт",
118
+ placeholder="Что исключить из изображения...",
119
+ lines=2
120
+ )
121
+
122
+ with gr.Accordion("Настройки генерации", open=False):
 
 
 
 
 
 
 
 
 
123
  with gr.Row():
124
+ seed = gr.Slider(0, 2147483647, value=42, label="Сид")
125
+ guidance_scale = gr.Slider(0.0, 20.0, value=7.5, label="Guidance Scale")
126
+
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  with gr.Row():
128
+ width = gr.Slider(256, 1024, value=512, step=64, label="Ширина")
129
+ height = gr.Slider(256, 1024, value=512, step=64, label="Высота")
130
+
131
+ num_inference_steps = gr.Slider(1, 100, value=20, step=1, label="Шаги генерации")
132
+
133
+ generate_btn = gr.Button("Сгенерировать", variant="primary")
134
+
135
+ output_image = gr.Image(label="Результат", show_label=False)
136
+ used_seed = gr.Number(label="Использованный сид", visible=True)
137
+
138
+ gr.Examples(
139
+ examples=examples,
140
+ inputs=[model_id, prompt],
141
+ outputs=[output_image, used_seed],
142
+ fn=infer,
143
+ cache_examples=True,
144
+ label="Примеры"
145
+ )
146
+
147
+ generate_btn.click(
148
  fn=infer,
149
  inputs=[
150
+ model_id,
151
  prompt,
152
  negative_prompt,
153
  seed,
 
154
  width,
155
  height,
156
  guidance_scale,
157
  num_inference_steps,
158
  ],
159
+ outputs=[output_image, used_seed]
160
  )
161
 
162
  if __name__ == "__main__":
163
+ demo.launch()