import gradio as gr import numpy as np import torch from diffusers import DiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "stabilityai/sdxl-turbo" # Текущая/последняя загруженная модель if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 # Изначально загружаем модель по умолчанию pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer( model, prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): global model_repo_id, pipe # Проверяем, нужно ли менять модель if model != model_repo_id: try: # Пробуем загрузить новую модель new_pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype) new_pipe = new_pipe.to(device) # Если успешно, то обновляем pipe и модель pipe = new_pipe model_repo_id = model except Exception as e: raise gr.Error(f"Не удалось загрузить модель {model}. Ошибка: {str(e)}") generator = torch.Generator(device=device).manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image App") # Вместо выпадающего списка — текстовое поле для ввода модели model = gr.Textbox( label="Model name or path", value="stabilityai/sdxl-turbo", # Значение по умолчанию interactive=True ) prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=20, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ model, prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()