import gradio as gr import numpy as np import torch from diffusers import DiffusionPipeline import re # Устройство и параметры загрузки модели device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Регулярное выражение для проверки корректности модели VALID_REPO_ID_REGEX = re.compile(r"^[a-zA-Z0-9._\-]+/[a-zA-Z0-9._\-]+$") def is_valid_repo_id(repo_id): return bool(VALID_REPO_ID_REGEX.match(repo_id)) and not repo_id.endswith(('-', '.')) # Изначально загружаем модель по умолчанию model_repo_id = "CompVis/stable-diffusion-v1-4" pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer( model, prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): global model_repo_id, pipe # Проверяем и загружаем новую модель, если она изменена if model != model_repo_id: if not is_valid_repo_id(model): raise gr.Error(f"Некорректный идентификатор модели: '{model}'. Проверьте название.") try: new_pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device) pipe = new_pipe model_repo_id = model except Exception as e: raise gr.Error(f"Не удалось загрузить модель '{model}'.\nОшибка: {e}") # Генератор случайных чисел для детерминированности generator = torch.Generator(device=device).manual_seed(seed) # Генерация изображения try: image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] except Exception as e: raise gr.Error(f"Ошибка при генерации изображения: {e}") return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# Text-to-Image App") model = gr.Textbox( label="Model", value="CompVis/stable-diffusion-v1-4", # Значение по умолчанию interactive=True ) prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=20, ) run_button = gr.Button("Run", variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) gr.Examples(examples=examples, inputs=[prompt]) run_button.click( infer, inputs=[ model, prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()