Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,27 +2,28 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
-
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
|
|
26 |
prompt,
|
27 |
negative_prompt,
|
28 |
seed,
|
@@ -33,6 +34,11 @@ def infer(
|
|
33 |
num_inference_steps,
|
34 |
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
|
|
|
|
|
|
|
|
|
|
36 |
if randomize_seed:
|
37 |
seed = random.randint(0, MAX_SEED)
|
38 |
|
@@ -50,7 +56,6 @@ def infer(
|
|
50 |
|
51 |
return image, seed
|
52 |
|
53 |
-
|
54 |
examples = [
|
55 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
"An astronaut riding a green horse",
|
@@ -66,7 +71,14 @@ css = """
|
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
with gr.Row():
|
72 |
prompt = gr.Text(
|
@@ -86,7 +98,6 @@ with gr.Blocks(css=css) as demo:
|
|
86 |
label="Negative prompt",
|
87 |
max_lines=1,
|
88 |
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
)
|
91 |
|
92 |
seed = gr.Slider(
|
@@ -94,10 +105,10 @@ with gr.Blocks(css=css) as demo:
|
|
94 |
minimum=0,
|
95 |
maximum=MAX_SEED,
|
96 |
step=1,
|
97 |
-
value=
|
98 |
)
|
99 |
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=
|
101 |
|
102 |
with gr.Row():
|
103 |
width = gr.Slider(
|
@@ -105,7 +116,7 @@ with gr.Blocks(css=css) as demo:
|
|
105 |
minimum=256,
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
-
value=
|
109 |
)
|
110 |
|
111 |
height = gr.Slider(
|
@@ -113,31 +124,33 @@ with gr.Blocks(css=css) as demo:
|
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=
|
117 |
)
|
118 |
|
119 |
with gr.Row():
|
120 |
guidance_scale = gr.Slider(
|
121 |
label="Guidance scale",
|
122 |
minimum=0.0,
|
123 |
-
maximum=
|
124 |
step=0.1,
|
125 |
-
value=
|
126 |
)
|
127 |
|
128 |
num_inference_steps = gr.Slider(
|
129 |
label="Number of inference steps",
|
130 |
minimum=1,
|
131 |
-
maximum=
|
132 |
step=1,
|
133 |
-
value=
|
134 |
)
|
135 |
|
136 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
137 |
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
139 |
fn=infer,
|
140 |
inputs=[
|
|
|
141 |
prompt,
|
142 |
negative_prompt,
|
143 |
seed,
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
|
|
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import torch
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
MAX_SEED = np.iinfo(np.int32).max
|
11 |
MAX_IMAGE_SIZE = 1024
|
12 |
|
13 |
+
def load_pipeline(model_id):
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
torch_dtype = torch.float16
|
16 |
+
else:
|
17 |
+
torch_dtype = torch.float32
|
18 |
+
|
19 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
20 |
+
return pipe.to(device)
|
21 |
+
|
22 |
+
# Initialize with default model
|
23 |
+
pipe = load_pipeline("CompVis/stable-diffusion-v1-4")
|
24 |
|
|
|
25 |
def infer(
|
26 |
+
model_id,
|
27 |
prompt,
|
28 |
negative_prompt,
|
29 |
seed,
|
|
|
34 |
num_inference_steps,
|
35 |
progress=gr.Progress(track_tqdm=True),
|
36 |
):
|
37 |
+
global pipe
|
38 |
+
|
39 |
+
if model_id:
|
40 |
+
pipe = load_pipeline(model_id)
|
41 |
+
|
42 |
if randomize_seed:
|
43 |
seed = random.randint(0, MAX_SEED)
|
44 |
|
|
|
56 |
|
57 |
return image, seed
|
58 |
|
|
|
59 |
examples = [
|
60 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
61 |
"An astronaut riding a green horse",
|
|
|
71 |
|
72 |
with gr.Blocks(css=css) as demo:
|
73 |
with gr.Column(elem_id="col-container"):
|
74 |
+
gr.Markdown(" # Text-to-Image Gradio Template with Model Selection")
|
75 |
+
|
76 |
+
model_id = gr.Text(
|
77 |
+
label="Model ID",
|
78 |
+
show_label=True,
|
79 |
+
placeholder="Enter HuggingFace model ID (e.g., CompVis/stable-diffusion-v1-4)",
|
80 |
+
value="CompVis/stable-diffusion-v1-4",
|
81 |
+
)
|
82 |
|
83 |
with gr.Row():
|
84 |
prompt = gr.Text(
|
|
|
98 |
label="Negative prompt",
|
99 |
max_lines=1,
|
100 |
placeholder="Enter a negative prompt",
|
|
|
101 |
)
|
102 |
|
103 |
seed = gr.Slider(
|
|
|
105 |
minimum=0,
|
106 |
maximum=MAX_SEED,
|
107 |
step=1,
|
108 |
+
value=42,
|
109 |
)
|
110 |
|
111 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
112 |
|
113 |
with gr.Row():
|
114 |
width = gr.Slider(
|
|
|
116 |
minimum=256,
|
117 |
maximum=MAX_IMAGE_SIZE,
|
118 |
step=32,
|
119 |
+
value=512,
|
120 |
)
|
121 |
|
122 |
height = gr.Slider(
|
|
|
124 |
minimum=256,
|
125 |
maximum=MAX_IMAGE_SIZE,
|
126 |
step=32,
|
127 |
+
value=512,
|
128 |
)
|
129 |
|
130 |
with gr.Row():
|
131 |
guidance_scale = gr.Slider(
|
132 |
label="Guidance scale",
|
133 |
minimum=0.0,
|
134 |
+
maximum=20.0,
|
135 |
step=0.1,
|
136 |
+
value=7.0,
|
137 |
)
|
138 |
|
139 |
num_inference_steps = gr.Slider(
|
140 |
label="Number of inference steps",
|
141 |
minimum=1,
|
142 |
+
maximum=100,
|
143 |
step=1,
|
144 |
+
value=20,
|
145 |
)
|
146 |
|
147 |
gr.Examples(examples=examples, inputs=[prompt])
|
148 |
+
|
149 |
gr.on(
|
150 |
triggers=[run_button.click, prompt.submit],
|
151 |
fn=infer,
|
152 |
inputs=[
|
153 |
+
model_id,
|
154 |
prompt,
|
155 |
negative_prompt,
|
156 |
seed,
|