import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def load_pipeline(model_id): if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) return pipe.to(device) # Initialize with default model pipe = load_pipeline("CompVis/stable-diffusion-v1-4") available_models = [ "CompVis/stable-diffusion-v1-4", "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", "prompthero/openjourney", ] def infer( model_id, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=None, ): global pipe if model_id: pipe = load_pipeline(model_id) if randomize_seed: seed = random.randint(0, MAX_SEED) # Ensure width and height are divisible by 8 width = max(256, (width // 8) * 8) height = max(256, (height // 8) * 8) # Set default value if num_inference_steps is None if num_inference_steps is None: num_inference_steps = 20 generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=int(num_inference_steps), # Ensure it's an integer width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template with Model Selection") model_id = gr.Dropdown( label="Model Selection", choices=available_models, value="CompVis/stable-diffusion-v1-4", ) prompt = gr.Text( label="Prompt", show_label=True, max_lines=1, placeholder="Enter your prompt", ) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=20, ) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=8, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=8, value=512, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ model_id, prompt, negative_prompt, seed, guidance_scale, num_inference_steps, width, height, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()