# DEBUG ONLY import time import random from tqdm import tqdm from backend.section_infer_helper.base_helper import BaseHelper from backend.utils.data_process import split_to_file_diff, split_to_section class RandomHelper(BaseHelper): PREDEF_MODEL = ["Random"] MODELS_SUPPORTED_LANGUAGES = { "Random": ["C", "C++", "Java", "Python"] } def load_model(self, model_name): pass def infer(self, diff_code): file_diff_list = split_to_file_diff(diff_code, BaseHelper._get_lang_ext(self.MODELS_SUPPORTED_LANGUAGES["Random"])) results = {} for file_a, _, file_diff in tqdm(file_diff_list, desc="Inferencing", unit="file", total=len(file_diff_list)): time.sleep(0.1) sections = split_to_section(file_diff) file = file_a.removeprefix("a/") results[file] = [] for section in sections: results[file].append({ "section": section, "predict": random.choice([0, 1]), "conf": random.random() }) return results random_helper = RandomHelper()