import llama_cpp from llama_cpp import Llama # import llama_cpp.llama_tokenizer import gradio as gr from huggingface_hub import hf_hub_download model_name = "large-traversaal/Alif-1.0-8B-Instruct" model_file = "model-Q8_0.gguf" model_path_file = hf_hub_download(model_name, filename=model_file,) llama = Llama( model_path=model_path_file, n_gpu_layers=40, # Adjust based on VRAM n_threads=8, # Match CPU cores n_batch=512, # Optimize for better VRAM usage n_ctx=4096, # Context window size verbose=True # Enable debug logging ) chat_prompt = """You are Urdu Chatbot. Write approriate response for given instruction:{inp} Response:""" # Function to generate text with streaming output def chat_with_ai(prompt): query = chat_prompt.format(inp=prompt) #response = llama(prompt, max_tokens=1024, stop=stop_tokens, echo=False, stream=True) # Enable streaming response = llama(query, max_tokens=256, stop=["Q:", "\n"], echo=False, stream=True) # Enable streaming text = "" for chunk in response: content = chunk["choices"][0]["text"] if content: text += content yield text # Gradio UI setup demo = gr.Interface( fn=chat_with_ai, # Streaming function inputs="text", # User input outputs="text", # Model response title="Streaming Alif-1.0-8B-Instruct Chatbot 🚀", description="Enter a prompt and get a streamed response." ) # Launch the Gradio app demo.launch(share=True)