# import torch # print(torch.cuda.is_available()) # Should return True # print(torch.cuda.get_device_name(0)) # Should return 'Tesla T4' # print(torch.cuda.get_device_capability(0)) import llama_cpp from llama_cpp import Llama # import llama_cpp.llama_tokenizer import gradio as gr from huggingface_hub import hf_hub_download model_name = "large-traversaal/Alif-1.0-8B-Instruct" model_file = "model-Q8_0.gguf" model_path_file = hf_hub_download(model_name, filename=model_file,) # llama = llama_cpp.Llama.from_pretrained( # repo_id="large-traversaal/Alif-1.0-8B-Instruct", # filename="*model-Q6_K.gguf", # tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained( # "large-traversaal/Alif-1.0-8B-Instruct" # ), # verbose=False, # ) # llama = Llama(model_path="./model-Q8_0.gguf", verbose=False) llama = Llama( model_path=model_path_file, n_gpu_layers=40, # Adjust based on VRAM n_threads=8, # Match CPU cores n_batch=512, # Optimize for better VRAM usage n_ctx=4096, # Context window size verbose=True # Enable debug logging ) chat_prompt = """You are Urdu Chatbot. Write approriate response for given instruction:{inp} Response:""" # prompt = "قابل تجدید توانائی کیا ہے؟" prompt = "شہر کراچی کے بارے میں بتاؤ" # prompt = chat_prompt.format(inp=prompt) # response = llama(prompt, max_tokens=256, stop=["Q:", "\n"], echo=False, stream=True) # Enable streaming # # prompt = "قابل تجدید توانائی کیا ہے؟" # stop_tokens = ["\n\n", "<|end_of_text|>"] # Stops after natural pauses or end-of-text token # Function to generate text with streaming output def chat_with_ai(prompt): query = chat_prompt.format(inp=prompt) #response = llama(prompt, max_tokens=1024, stop=stop_tokens, echo=False, stream=True) # Enable streaming response = llama(query, max_tokens=256, stop=["Q:", "\n"], echo=False, stream=True) # Enable streaming # response = llama.create_chat_completion( # messages = [ # {"role": "system", "content": "You are a Urdu Chatbot."}, # { # "role": "user", # "content": prompt # } # ], # stream=True # ) text = "" for chunk in response: content = chunk["choices"][0]["text"] if content: text += content yield text # Gradio UI setup demo = gr.Interface( fn=chat_with_ai, # Streaming function inputs="text", # User input outputs="text", # Model response title="💬 Streaming AI Chatbot", description="Enter a prompt and get a streamed response from Llama.cpp (GGUF)." ) # Launch the Gradio app demo.launch(share=True)