File size: 30,345 Bytes
4c10590
3ffd31e
4c10590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e9522
 
49d41a8
b9e9522
 
49d41a8
b9e9522
 
4c10590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e9522
 
 
 
 
 
 
 
 
 
4c10590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e9522
 
4c10590
 
 
 
 
b9e9522
4c10590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e9522
4c10590
b9e9522
4c10590
 
 
 
 
b9e9522
4c10590
 
 
b9e9522
4c10590
 
 
b9e9522
4c10590
 
 
 
 
 
 
 
 
 
 
 
b9e9522
 
 
 
 
 
 
4c10590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e9522
4c10590
 
 
 
 
 
 
 
 
 
 
 
 
b9e9522
4c10590
 
 
 
 
b9e9522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c10590
 
b9e9522
 
 
 
 
 
4c10590
 
 
 
 
 
 
 
b9e9522
4c10590
 
b9e9522
 
4c10590
 
 
 
b9e9522
4c10590
 
b9e9522
 
 
 
 
4c10590
 
 
 
b9e9522
4c10590
 
b9e9522
4c10590
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e9522
4c10590
b9e9522
 
4c10590
 
 
 
 
 
 
 
 
 
 
b9e9522
 
4c10590
b9e9522
 
4c10590
b9e9522
 
 
 
 
4c10590
b9e9522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c10590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49d41a8
4c10590
 
 
b9e9522
 
 
 
 
4c10590
b9e9522
4c10590
 
b9e9522
4c10590
 
b9e9522
 
4c10590
 
 
 
 
 
 
 
 
 
 
b9e9522
4c10590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49d41a8
4c10590
 
 
 
 
 
 
 
 
 
b9e9522
4c10590
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e9522
4c10590
 
 
 
 
b9e9522
4c10590
b9e9522
 
 
 
 
 
 
 
 
 
 
4c10590
 
 
 
b9e9522
4c10590
 
b9e9522
4c10590
 
 
 
 
 
b9e9522
4c10590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e9522
4c10590
 
b9e9522
 
4c10590
 
 
 
 
 
 
 
 
 
b9e9522
4c10590
 
 
 
b9e9522
4c10590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ffd31e
4c10590
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
import io
import streamlit as st
import requests
import time
import os
from pathlib import Path
import glob
import base64
import pandas as pd
from datetime import datetime

# Configure page
st.set_page_config(
    page_title="PDF Parser - Table Extraction Tool",
    page_icon="πŸ“‹",
    layout="wide",
    initial_sidebar_state="collapsed"
)

# Custom CSS for styling - Grey and White Theme
st.markdown("""
<style>
    .main-header {
        text-align: center;
        padding: 2rem 0;
        background: linear-gradient(135deg, #6c757d 0%, #495057 100%);
        border-radius: 10px;
        margin-bottom: 2rem;
        color: white;
    }
    
    .feature-card {
        background: #f8f9fa;
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 2px 10px rgba(0,0,0,0.1);
        text-align: center;
        margin: 1rem 0;
        border: 1px solid #dee2e6;
    }
    
    .demo-button {
        background: linear-gradient(45deg, #6c757d, #495057);
        color: white;
        border: none;
        padding: 12px 24px;
        border-radius: 25px;
        font-weight: bold;
        cursor: pointer;
        margin: 10px;
    }
    
    .upload-button {
        background: #495057;
        color: white;
        border: none;
        padding: 12px 24px;
        border-radius: 25px;
        font-weight: bold;
        cursor: pointer;
        margin: 10px;
    }
    
    .success-message {
        background: #f8f9fa;
        color: #495057;
        padding: 15px;
        border-radius: 5px;
        border-left: 4px solid #6c757d;
        margin: 20px 0;
    }
    
    .processing-message {
        background: #f8f9fa;
        color: #495057;
        padding: 15px;
        border-radius: 5px;
        border-left: 4px solid #adb5bd;
        margin: 20px 0;
    }
    
    .method-tab {
        background: #f8f9fa;
        padding: 10px 15px;
        border-radius: 5px;
        margin: 5px;
        cursor: pointer;
        border: 2px solid #dee2e6;
    }
    
    .method-tab-active {
        background: #6c757d;
        color: white;
        border: 2px solid #495057;
    }
    
    .html-file-card {
        background: #f8f9fa;
        padding: 15px;
        border-radius: 8px;
        margin: 10px 0;
        border-left: 4px solid #6c757d;
    }
    
    .file-info-card {
        background: #f8f9fa;
        padding: 12px;
        border-radius: 8px;
        margin: 5px 0;
        border-left: 4px solid #6c757d;
        font-size: 0.9em;
    }
    
    .file-stats {
        color: #6c757d;
        font-size: 0.85em;
        margin-top: 5px;
    }
    
    .stSelectbox > div > div {
        background-color: #f8f9fa;
    }
    
    .hidden-text {
        color: #adb5bd;
        font-style: italic;
    }
    
    .table-container {
        max-height: 400px;
        overflow-y: auto;
        border: 1px solid #dee2e6;
        border-radius: 5px;
        padding: 10px;
        margin: 10px 0;
        background-color: white;
    }
    
    .table-header {
        background: #f8f9fa;
        padding: 10px;
        border-radius: 5px;
        margin-bottom: 10px;
        border-left: 4px solid #6c757d;
    }
    
    /* Override Streamlit button styles */
    .stButton > button {
        background-color: #6c757d !important;
        color: white !important;
        border: 1px solid #495057 !important;
        border-radius: 5px !important;
    }
    
    .stButton > button:hover {
        background-color: #495057 !important;
        border-color: #343a40 !important;
    }
    
    /* Override primary button styles */
    .stButton > button[kind="primary"] {
        background-color: #495057 !important;
        color: white !important;
        border: 1px solid #343a40 !important;
    }
    
    .stButton > button[kind="primary"]:hover {
        background-color: #343a40 !important;
    }
    
    /* Style checkboxes */
    .stCheckbox > label {
        color: #495057 !important;
    }
    
    /* Style text inputs */
    .stTextInput > div > div > input {
        background-color: #f8f9fa !important;
        border-color: #dee2e6 !important;
    }
    
    /* Style file uploader */
    .stFileUploader > div {
        background-color: #f8f9fa !important;
        border-color: #dee2e6 !important;
    }
    
    /* Style dataframes */
    .stDataFrame {
        background-color: white !important;
        border: 1px solid #dee2e6 !important;
    }
    
    /* Style selectbox */
    .stSelectbox > div > div {
        background-color: #f8f9fa !important;
        border-color: #dee2e6 !important;
    }
    
    /* Style progress bar */
    .stProgress > div > div > div {
        background-color: #6c757d !important;
    }
</style>
""", unsafe_allow_html=True)

# Initialize session state
if 'page' not in st.session_state:
    st.session_state.page = 'home'
if 'processing' not in st.session_state:
    st.session_state.processing = False
if 'results' not in st.session_state:
    st.session_state.results = None
if 'show_output_dir' not in st.session_state:
    st.session_state.show_output_dir = False
if 'selected_method' not in st.session_state:
    st.session_state.selected_method = None
if 'demo_results' not in st.session_state:
    st.session_state.demo_results = None
if 'demo_selected_methods' not in st.session_state:
    st.session_state.demo_selected_methods = {'docling': True, 'llamaparse': False, 'unstructured': False}

# Get the directory where the script is located (src)
SCRIPT_DIR = Path(__file__).parent

# Tesla demo document path (assuming it's in the src directory or adjust as needed)
TESLA_DOC_PATH = SCRIPT_DIR / "tesla_docs_28-41 (1)-9-14.pdf"

# Output directory is src/output
OUTPUT_BASE_PATH = SCRIPT_DIR / "output"

def show_home_page():
    # Header
    st.markdown("""
    <div class="main-header">
        <h1 style="font-size: 3rem; margin: 0; color: #f8f9fa;">Transform PDF Tables to</h1>
        <h1 style="font-size: 3rem; margin: 0; color: #ffffff;">HTML and Excel</h1>
        <p style="margin-top: 1rem; font-size: 1.2rem; opacity: 0.9;">Powered by Traversaal.ai</p>
        <p style="margin-top: 0.5rem; opacity: 0.8;">Perfect for financial reports, research papers, and data analysis.</p>
    </div>
    """, unsafe_allow_html=True)
    
    # Main buttons
    col1, col2, col3 = st.columns([1, 2, 1])
    with col2:
        col_btn1, col_btn2 = st.columns(2)
        with col_btn1:
            if st.button("πŸ“„ Upload PDF Document", key="upload_btn", help="Upload your own PDF document"):
                st.session_state.page = 'upload'
                st.rerun()
        
        with col_btn2:
            if st.button("⚑ Try Tesla 10K Demo", key="demo_btn", help="Try with Tesla's 10K form"):
                st.session_state.page = 'demo_setup'
                st.rerun()
    
    # Features section
    st.markdown("---")
    col1, col2, col3 = st.columns(3)
    
    with col1:
        st.markdown("""
        <div class="feature-card">
            <h3 style="color: #495057;">⚑ Lightning Fast</h3>
            <p style="color: #6c757d;">Process complex PDFs in seconds with our advanced AI algorithms</p>
        </div>
        """, unsafe_allow_html=True)
    
    with col2:
        st.markdown("""
        <div class="feature-card">
            <h3 style="color: #495057;">πŸ”’ Secure & Private</h3>
            <p style="color: #6c757d;">Your documents are processed securely and never stored permanently</p>
        </div>
        """, unsafe_allow_html=True)
    
    with col3:
        st.markdown("""
        <div class="feature-card">
            <h3 style="color: #495057;">πŸ”„ Batch Processing</h3>
            <p style="color: #6c757d;">Handle multiple documents and tables simultaneously</p>
        </div>
        """, unsafe_allow_html=True)

def show_upload_page():
    st.markdown("## πŸ“„ Upload Your Document")
    
    # File upload
    uploaded_file = st.file_uploader(
        "Choose a PDF file", 
        type=['pdf'],
        help="Upload a PDF document to extract tables from"
    )
    
    # Input file path (alternative)
    st.markdown("**Or specify file path:**")
    input_file_path = st.text_input(
        "Input File Path",
        placeholder="C:\\path\\to\\your\\document.pdf",
        help="Enter the full path to your PDF file"
    )
    
    # Output directory with show/hide functionality
    output_dir = st.text_input(
        "Output Directory",
        placeholder="C:\\path\\to\\output\\folder",
        help="Directory where extracted tables will be saved",
        type="password" if not st.session_state.show_output_dir else "default"
    )
    
    # Show/Hide output directory toggle
    col1, col2 = st.columns([3, 1])
    with col2:
        if st.button("πŸ‘οΈ View/Hide Path"):
            st.session_state.show_output_dir = not st.session_state.show_output_dir
            st.rerun()
    
    # Extraction method selection
    st.markdown("### πŸ”§ Select Extraction Methods")
    col1, col2, col3 = st.columns(3)
    
    with col1:
        docling = st.checkbox("Docling", value=True, help="Advanced document processing")
    with col2:
        llamaparse = st.checkbox("LlamaParse", value=False, help="AI-powered parsing")
    with col3:
        unstructured = st.checkbox("Unstructured", value=False, help="General purpose extraction")
    
    # Process button
    if st.button("πŸš€ Process Document", type="primary"):
        if (uploaded_file or input_file_path) and output_dir and (docling or llamaparse or unstructured):
            file_path = input_file_path if input_file_path else uploaded_file.name
            process_document(file_path, output_dir, docling, llamaparse, unstructured)
        else:
            st.error("Please provide input file, output directory, and select at least one extraction method.")
    
    # Back button
    if st.button("← Back to Home"):
        st.session_state.page = 'home'
        st.rerun()

def show_demo_setup_page():
    st.markdown("## ⚑ Tesla 10K Demo Setup")
    st.markdown("*Configure extraction methods for Tesla's 10K document processing*")
    
    # Document info
    st.markdown("### πŸ“„ Document Information")
    st.info("**Document:** tesla_docs_28-41 (1)-9-14.pdf")
    
    # Extraction method selection (removed output directory section completely)
    st.markdown("### πŸ”§ Select Extraction Methods")
    col1, col2, col3 = st.columns(3)
    
    with col1:
        docling = st.checkbox("Docling", 
                             value=st.session_state.demo_selected_methods['docling'], 
                             help="Advanced document processing")
    with col2:
        llamaparse = st.checkbox("LlamaParse", 
                                value=st.session_state.demo_selected_methods['llamaparse'], 
                                help="AI-powered parsing")
    with col3:
        unstructured = st.checkbox("Unstructured", 
                                  value=st.session_state.demo_selected_methods['unstructured'], 
                                  help="General purpose extraction")
    
    # Update session state
    st.session_state.demo_selected_methods = {
        'docling': docling,
        'llamaparse': llamaparse,
        'unstructured': unstructured
    }
    
    # Process button
    col1, col2 = st.columns([2, 1])
    with col1:
        if st.button("πŸš€ Process Tesla Document", type="primary"):
            if docling or llamaparse or unstructured:
                st.session_state.page = 'demo'
                st.session_state.processing = True
                st.rerun()
            else:
                st.error("Please select at least one extraction method.")
    
    with col2:
        if st.button("← Back to Home"):
            st.session_state.page = 'home'
            st.rerun()

def show_demo_page():
    if st.session_state.processing:
        show_processing_demo()
    else:
        show_demo_results()

def show_processing_demo():
    st.markdown("## ⚑ Processing Tesla 10K Document...")
    
    # Show selected methods
    selected_methods = [method for method, selected in st.session_state.demo_selected_methods.items() if selected]
    st.markdown(f"*Processing with selected methods: {', '.join([m.title() for m in selected_methods])}*")
    
    # Progress bar
    progress_bar = st.progress(0)
    status_text = st.empty()
    method_status = st.empty()
    
    # Calculate total steps based on selected methods
    total_methods = len(selected_methods)
    steps_per_method = 30
    total_steps = total_methods * steps_per_method
    
    current_method_index = 0
    for i in range(total_steps):
        progress = (i + 1) / total_steps
        progress_bar.progress(progress)
        
        # Determine current method
        method_step = i % steps_per_method
        if method_step == 0 and i > 0:
            current_method_index += 1
        
        current_method = selected_methods[current_method_index]
        method_progress = (method_step + 1) / steps_per_method
        
        # Update status messages
        if method_progress < 0.3:
            status_text.text(f"πŸ“„ {current_method.title()}: Reading document... {int(method_progress * 100)}%")
        elif method_progress < 0.7:
            status_text.text(f"πŸ” {current_method.title()}: Extracting tables... {int(method_progress * 100)}%")
        else:
            status_text.text(f"πŸ’Ύ {current_method.title()}: Generating HTML outputs... {int(method_progress * 100)}%")
        
        method_status.markdown(f"**Overall Progress:** {int(progress * 100)}% | **Current Method:** {current_method.title()}")
        
        time.sleep(0.33)
    
    # Show completion
    st.markdown("""
    <div class="success-message">
        βœ… <strong>Document processed successfully!</strong><br>
        Tables have been extracted using selected methods and HTML files are ready for viewing.
    </div>
    """, unsafe_allow_html=True)
    
    # Process Tesla demo
    process_tesla_demo()
    
    st.session_state.processing = False
    time.sleep(2)
    st.rerun()

def process_tesla_demo():
    """Process Tesla demo document using selected extraction methods"""
    try:
        # Create output directory for demo (using the base path)
        demo_output_dir = OUTPUT_BASE_PATH / "tesla_demo"
        
        # Prepare the request data for selected methods only
        data = {
            'input_file_path': str(TESLA_DOC_PATH),
            'output_dir': str(demo_output_dir),
            'docling': st.session_state.demo_selected_methods['docling'],
            'llamaparse': st.session_state.demo_selected_methods['llamaparse'],
            'unstructured': st.session_state.demo_selected_methods['unstructured']
        }
        
        # Make request to FastAPI endpoint (uncomment when ready)
        # response = requests.post('http://localhost:8000/extract', data=data)
        # if response.status_code == 200:
        #     st.session_state.demo_results = response.json()
        
        # For demo purposes, simulate successful processing for selected methods only
        results = {}
        if st.session_state.demo_selected_methods['docling']:
            results['docling'] = {'status': 'success', 'total_tables': 5}
        if st.session_state.demo_selected_methods['llamaparse']:
            results['llamaparse'] = {'status': 'success', 'total_tables': 3}
        if st.session_state.demo_selected_methods['unstructured']:
            results['unstructured'] = {'status': 'success', 'total_tables': 4}
        
        st.session_state.demo_results = {'results': results}
        
    except Exception as e:
        st.error(f"Error processing Tesla demo: {str(e)}")

def count_html_files(directory):
    """Count only HTML files in directory"""
    if not os.path.exists(directory):
        return 0
    
    html_files = glob.glob(os.path.join(str(directory), "*.html"))
    html_files.extend(glob.glob(os.path.join(str(directory), "**", "*.html"), recursive=True))
    return len(html_files)

def get_excel_files(directory):
    """Get all Excel files from directory"""
    if not os.path.exists(directory):
        return []
    
    excel_files = glob.glob(os.path.join(str(directory), "*.xlsx"))
    excel_files.extend(glob.glob(os.path.join(str(directory), "*.xls")))
    excel_files.extend(glob.glob(os.path.join(str(directory), "*.csv")))
    excel_files.extend(glob.glob(os.path.join(str(directory), "**", "*.xlsx"), recursive=True))
    excel_files.extend(glob.glob(os.path.join(str(directory), "**", "*.xls"), recursive=True))
    return excel_files

def get_file_info(file_path):
    """Get file information including size and modification time"""
    if not os.path.exists(file_path):
        return {"size": 0, "modified": "Unknown"}
    
    stat = os.stat(file_path)
    size_kb = stat.st_size / 1024
    modified = datetime.fromtimestamp(stat.st_mtime)
    
    return {
        "size": f"{size_kb:.1f} KB",
        "modified": modified.strftime("%Y-%m-%d %H:%M")
    }

def show_demo_results():
    st.markdown("## πŸ“Š Tesla 10K Processing Results")
    
    # Document info
    col1, col2 = st.columns([2, 1])
    with col1:
        st.markdown("### πŸ“„ tesla_docs_28-41 (1)-9-14.pdf")
        st.markdown("**Status:** βœ… Complete")
        processed_methods = [method.title() for method, selected in st.session_state.demo_selected_methods.items() if selected]
        st.markdown(f"**Processed with:** {', '.join(processed_methods)}")
    
    with col2:
        if st.button("πŸ”„ Reset"):
            st.session_state.page = 'home'
            st.session_state.processing = False
            st.session_state.results = None
            st.session_state.demo_results = None
            st.session_state.selected_method = None
            st.session_state.demo_selected_methods = {'docling': True, 'llamaparse': False, 'unstructured': False}
            st.rerun()
    
    # Method selection tabs - only show selected methods
    available_methods = [method for method, selected in st.session_state.demo_selected_methods.items() if selected]
    
    if len(available_methods) > 1:
        st.markdown("### πŸ”§ Select Extraction Method to View")
        
        method_labels = {
            'docling': 'πŸ”§ Docling',
            'llamaparse': 'πŸ¦™ LlamaParse', 
            'unstructured': 'πŸ“Š Unstructured'
        }
        
        # Create columns based on number of available methods
        cols = st.columns(len(available_methods))
        
        for i, method in enumerate(available_methods):
            with cols[i]:
                # Show HTML file count for each method using the same logic as show_html_tables
                method_output_dir = OUTPUT_BASE_PATH / method
                html_files = []
                if os.path.exists(method_output_dir):
                    html_files = glob.glob(os.path.join(str(method_output_dir), "**", "*.html"), recursive=True)
                    html_files = list(set(html_files))
                html_count = len(html_files)
                button_label = f"{method_labels[method]} ({html_count} HTML files)"
                
                if st.button(button_label, key=f"tab_{method}", use_container_width=True):
                    st.session_state.selected_method = method
    
    # Default to first available method if no method selected
    if st.session_state.selected_method is None or st.session_state.selected_method not in available_methods:
        st.session_state.selected_method = available_methods[0] if available_methods else None
    
    # Show results for selected method
    if st.session_state.selected_method:
        show_method_results(st.session_state.selected_method)

def show_method_results(method):
    st.markdown(f"### πŸ“‹ Results from {method.title()}")
    
    # Changed column ratio: 3:1 for HTML tables:Excel files
    col1, col2 = st.columns([3, 1])
    
    with col1:
        st.markdown("#### πŸ“„ HTML Tables")
        show_html_tables(method)
    
    with col2:
        st.markdown("#### πŸ“Š Excel Files")
        show_excel_files(method)

def show_html_tables(method):
    """Display HTML tables from the method's output directory"""
    method_output_dir = OUTPUT_BASE_PATH / method
    
    # Get actual HTML files from directory
    html_files = []
    if os.path.exists(method_output_dir):
        # Use only the recursive glob, which includes the top-level directory
        html_files = glob.glob(os.path.join(str(method_output_dir), "**", "*.html"), recursive=True)
        # Remove duplicates just in case
        html_files = list(set(html_files))
    
    # Sort files by table number if possible (e.g., table_1, table_2, ...)
    import re
    def extract_table_number(filename):
        match = re.search(r"table[_-](\d+)", filename, re.IGNORECASE)
        if match:
            return int(match.group(1))
        return float('inf')  # Put files without a number at the end
    html_files.sort(key=lambda f: extract_table_number(os.path.basename(f)))
    
    if html_files:
        st.markdown(f"**Found {len(html_files)} HTML table(s):**")
        
        # Display all HTML files in one scrollable container
        st.markdown('<div class="table-container">', unsafe_allow_html=True)
        
        for i, html_file in enumerate(html_files):
            st.markdown(f"""
            <div class="table-header">
                <h4 style="color: #495057;">πŸ“‹ Table {i+1}</h4>
                <small style="color: #6c757d;">File: {os.path.basename(html_file)}</small>
            </div>
            """, unsafe_allow_html=True)
            
            # Display HTML content
            try:
                with open(html_file, 'r', encoding='utf-8') as f:
                    html_content = f.read()
                st.components.v1.html(html_content, height=300, scrolling=True)
                    
            except Exception as e:
                st.error(f"Error displaying HTML file: {e}")
            
            # Download button for individual HTML file
            col_download1, col_download2, col_download3 = st.columns([1, 1, 2])
            with col_download1:
                try:
                    with open(html_file, 'r', encoding='utf-8') as f:
                        html_content = f.read()
                    st.download_button(
                        label=f"⬇️ Table {i+1}",
                        data=html_content,
                        file_name=f"table_{i+1}_{method}.html",
                        mime="text/html",
                        key=f"download_html_{method}_{i}",
                        use_container_width=True
                    )
                except Exception as e:
                    st.error(f"Error reading file for download: {e}")
            
            if i < len(html_files) - 1:
                st.markdown("---")
        
        st.markdown('</div>', unsafe_allow_html=True)
        
    else:
        st.warning(f"No HTML files found in {method_output_dir}")

def show_excel_files(method):
    """Display Excel files from the method's output directory"""
    method_output_dir = OUTPUT_BASE_PATH / method
    
    # Get actual Excel files from directory
    excel_files = get_excel_files(method_output_dir)
    
    if excel_files:
        st.markdown(f"**Found {len(excel_files)} Excel file(s):**")
        
        for i, excel_file in enumerate(excel_files):
            # Get file info
            file_info = get_file_info(excel_file)
            file_name = os.path.basename(excel_file)
            
            # File info card
            st.markdown(f"""
            <div class="file-info-card">
                <strong style="color: #495057;">πŸ“Š {file_name}</strong>
                <div class="file-stats">
                    <strong>Size:</strong> {file_info['size']}<br>
                    <strong>Modified:</strong> {file_info['modified']}
                </div>
            </div>
            """, unsafe_allow_html=True)
            
            # Try to read and display Excel file preview
            try:
                df = pd.read_excel(excel_file)
                if not df.empty:
                    st.markdown(f"**Preview (first 5 rows):**")
                    st.dataframe(df.head(), use_container_width=True)
                    st.markdown(f"**Dimensions:** {df.shape[0]} Γ— {df.shape[1]}")
                else:
                    st.info("Excel file is empty")
            except Exception as e:
                # Try reading as CSV if Excel reading fails
                try:
                    df = pd.read_csv(excel_file)
                    if not df.empty:
                        st.markdown(f"**Preview (first 5 rows, read as CSV):**")
                        st.dataframe(df.head(), use_container_width=True)
                        st.markdown(f"**Dimensions:** {df.shape[0]} Γ— {df.shape[1]}")
                    else:
                        st.info("CSV file is empty")
                except Exception as e2:
                    st.warning(f"Could not preview file as Excel or CSV: {e2}")
            
            # Download button for Excel file
            try:
                with open(excel_file, 'rb') as f:
                    excel_data = f.read()
                st.download_button(
                    label=f"⬇️ Download",
                    data=excel_data,
                    file_name=file_name,
                    mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
                    key=f"download_excel_{method}_{i}",
                    use_container_width=True
                )
            except Exception as e:
                st.error(f"Error reading Excel file for download: {e}")
            
            if i < len(excel_files) - 1:
                st.markdown("---")
    else:
        st.warning(f"No Excel files found in {method_output_dir}")

def process_document(file_path, output_dir, docling, llamaparse, unstructured):
    """Process document using the FastAPI endpoint"""
    try:
        # Prepare the request data
        data = {
            'input_file_path': file_path,
            'output_dir': output_dir,
            'docling': docling,
            'llamaparse': llamaparse,
            'unstructured': unstructured
        }
        
        # Show processing message
        with st.spinner('Processing document...'):
            # Make request to FastAPI endpoint
            # Replace with your actual FastAPI endpoint URL
            response = requests.post('http://localhost:8000/extract', data=data)
            
            if response.status_code == 200:
                st.session_state.results = response.json()
                st.success("Document processed successfully!")
                
                # Show results
                results = st.session_state.results['results']
                
                # Method selection for viewing results
                st.markdown("### πŸ“Š View Results")
                available_methods = [method for method in ['docling', 'llamaparse', 'unstructured'] 
                                   if method in results and isinstance(results[method], dict)]
                
                if available_methods:
                    selected_method = st.selectbox(
                        "Select extraction method to view:",
                        available_methods,
                        help="Choose which extraction method results to display"
                    )
                    
                    if selected_method and isinstance(results[selected_method], dict):
                        method_result = results[selected_method]
                        st.json(method_result)
                        
                        # List files in output directory
                        method_dir = os.path.join(output_dir, selected_method)
                        
                        # HTML files
                        html_files = glob.glob(os.path.join(method_dir, "*.html"))
                        html_files.extend(glob.glob(os.path.join(method_dir, "**", "*.html"), recursive=True))
                        
                        # Excel files
                        excel_files = get_excel_files(method_dir)
                        
                        if html_files or excel_files:
                            st.markdown("### πŸ“„ Generated Files")
                            
                            if html_files:
                                st.markdown("**HTML Files:**")
                                for html_file in html_files:
                                    st.markdown(f"- {os.path.basename(html_file)}")
                            
                            if excel_files:
                                st.markdown("**Excel Files:**")
                                for excel_file in excel_files:
                                    st.markdown(f"- {os.path.basename(excel_file)}")
                else:
                    st.warning("No successful extractions found.")
                    
            else:
                st.error(f"Error processing document: {response.text}")
                
    except requests.exceptions.ConnectionError:
        st.error("Could not connect to the processing service. Please ensure the FastAPI server is running.")
    except Exception as e:
        st.error(f"An error occurred: {str(e)}")

def main():
    # Navigation header
    col1, col2 = st.columns([1, 1])
    with col1:
        st.markdown("### πŸ“‹ PDF Parser")
        st.markdown("*Table Extraction Tool*")
    with col2:
        nav_col1, nav_col2 = st.columns(2)
        with nav_col1:
            if st.button("Dashboard", use_container_width=True):
                st.session_state.page = 'home'
                st.rerun()
        with nav_col2:
            st.button("History", use_container_width=True)
    st.markdown("---")
    # Route to appropriate page
    if st.session_state.page == 'home':
        show_home_page()
    elif st.session_state.page == 'upload':
        show_upload_page()
    elif st.session_state.page == 'demo_setup':
        show_demo_setup_page()
    elif st.session_state.page == 'demo':
        show_demo_page()

if __name__ == "__main__":
    main()