File size: 1,093 Bytes
fb49ad8
 
 
4376882
 
fb49ad8
 
4376882
 
fb49ad8
4376882
64374d2
fb49ad8
5280802
 
 
 
 
 
 
 
 
 
 
 
 
fb49ad8
 
9267364
5280802
9267364
 
 
fb49ad8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gradio as gr
from gradio_client import Client

access_token = "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"

# Function to call the Gradio API
def call_gradio_api(user_input):
    
    client = Client("https://traversaal-internal-rag-faiss-gpt3-5.hf.space/", hf_token=access_token)
    result = client.predict(user_input, api_name="/predict")
    return result[0], result[1], result[2]
    
# Interface for the Gradio app

new_prompt = gr.Textbox(
                label="Augmented Prompt", placeholder="The generated summary will appear here"
            )

chat_response = gr.Textbox(
                label="Response", placeholder="The generated summary will appear here"
            )

source_list = gr.Textbox(
                label="Sources", placeholder="The generated summary will appear here"
            )
    
iface = gr.Interface(
    fn=call_gradio_api, 
    inputs="text",
    outputs = [new_prompt, chat_response, source_list],
    layout="vertical",
    title="CCL Playground",
    description="Enter a query to get response using RAG"
)

# Launch the Gradio app
iface.launch()