File size: 1,763 Bytes
fb49ad8
 
 
4376882
 
fb49ad8
 
4376882
 
fb49ad8
c104447
64374d2
fb49ad8
5280802
 
1d9e19f
5280802
 
a49ee2f
 
 
 
 
 
5280802
 
e2281c1
1d9e19f
5280802
e2281c1
 
 
 
5280802
fb49ad8
 
9267364
c104447
b24a219
d4b5669
9267364
 
fb49ad8
 
 
c104447
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
from gradio_client import Client

access_token = "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"

# Function to call the Gradio API
def call_gradio_api(user_input):
    
    client = Client("https://traversaal-internal-rag-faiss-gpt3-5.hf.space/", hf_token=access_token)
    result = client.predict(user_input, api_name="/predict")
    return result[0], result[1], result[2], result[3], result[4]
    
# Interface for the Gradio app

new_prompt = gr.Textbox(
                label="Augmented Prompt", placeholder="Augmented Prompt will appear here"
            )

chat_response_1 = gr.Textbox(
                label="Response based on augmented prompt", placeholder="Response of the prompt will appear here"
            )

chat_response_2 = gr.Textbox(
                label="Response based on original prompt", placeholder="Response of the prompt will appear here"
            )

source_list = gr.JSON(
                label="Sources", placeholder="Document source title and doi will appear here"
            )

questions = gr.JSON(
                label="Questions", placeholder="Related questions"
            )
    
iface = gr.Interface(
    fn=call_gradio_api, 
    inputs="text",
    outputs = [new_prompt, chat_response_1, chat_response_2, source_list, questions],
    examples=["Make me a 4-hour workshop agenda for handling conflict", "Tell me about the different skills from middle management to executive leadership", "What are some of the major debates among scholars regarding the trait versus process theories of leadership? How have these perspectives evolved over time?"],
    layout="horizontal",
    title="CCL Playground",
    description="Enter a query to get response using RAG"
)

# Launch the Gradio app
iface.queue().launch()