AreejMehboob commited on
Commit
37c786c
·
verified ·
1 Parent(s): 7603e25

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -23
app.py CHANGED
@@ -1,13 +1,22 @@
 
 
1
  # import os
2
  # import gradio as gr
3
  # import numpy as np
4
  # from transformers import AutoTokenizer, AutoModel
5
  # import time
 
 
6
  # # :white_check_mark: Setup environment
7
  # os.makedirs(os.environ.get("HF_HOME", "./hf_cache"), exist_ok=True)
8
  # hf_token = os.environ.get("HF_TOKEN")
9
  # if not hf_token:
10
  # raise EnvironmentError(":x: Environment variable HF_TOKEN is not set.")
 
 
 
 
 
11
  # # :white_check_mark: Load model and tokenizer
12
  # text_tokenizer = AutoTokenizer.from_pretrained(
13
  # "nomic-ai/nomic-embed-text-v1.5",
@@ -20,23 +29,28 @@
20
  # trust_remote_code=True,
21
  # token=hf_token,
22
  # cache_dir=os.environ["HF_HOME"]
23
- # )
 
24
  # # :white_check_mark: Embedding function
25
  # def get_text_embeddings(text):
26
  # """
27
  # Converts input text into a dense embedding using the Nomic embedding model.
28
  # These embeddings are used to query Qdrant for semantically relevant document chunks.
29
  # """
30
- # inputs = text_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
31
- # outputs = text_model(**inputs)
 
32
  # embeddings = outputs.last_hidden_state.mean(dim=1)
33
- # return embeddings[0].detach().numpy()
 
 
34
  # # :white_check_mark: Gradio interface function
35
  # def embed_text_interface(text):
36
- # strt_time=time.time()
37
  # embedding = get_text_embeddings(text)
38
  # print(f"Total time taken by nomic to embed: {time.time()-strt_time}")
39
- # return str(embedding)
 
40
  # # :white_check_mark: Gradio UI
41
  # interface = gr.Interface(
42
  # fn=embed_text_interface,
@@ -45,6 +59,7 @@
45
  # title="Text Embedding with Nomic AI",
46
  # description="Enter some text, and get its embedding vector using Nomic's embedding model."
47
  # )
 
48
  # # :white_check_mark: Launch the app
49
  # if __name__ == "__main__":
50
  # interface.launch()
@@ -81,35 +96,44 @@ text_model = AutoModel.from_pretrained(
81
  cache_dir=os.environ["HF_HOME"]
82
  ).to(device) # Move model to GPU if available
83
 
84
- # :white_check_mark: Embedding function
85
  def get_text_embeddings(text):
86
- """
87
- Converts input text into a dense embedding using the Nomic embedding model.
88
- These embeddings are used to query Qdrant for semantically relevant document chunks.
89
- """
90
- inputs = text_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device) # Move inputs to same device as model
91
- with torch.no_grad(): # Disable gradient calculation for inference
92
  outputs = text_model(**inputs)
93
  embeddings = outputs.last_hidden_state.mean(dim=1)
94
- print(embeddings[0].detach().cpu().numpy())
95
  return embeddings[0].detach().cpu().numpy()
96
 
97
- # :white_check_mark: Gradio interface function
 
 
 
 
 
98
  def embed_text_interface(text):
99
  strt_time = time.time()
100
  embedding = get_text_embeddings(text)
101
  print(f"Total time taken by nomic to embed: {time.time()-strt_time}")
102
- return embedding
 
 
 
 
 
 
 
103
 
104
- # :white_check_mark: Gradio UI
105
  interface = gr.Interface(
106
  fn=embed_text_interface,
107
- inputs=gr.Textbox(label="Enter text to embed", lines=5),
108
- outputs=gr.Textbox(label="Embedding vector"),
109
- title="Text Embedding with Nomic AI",
110
- description="Enter some text, and get its embedding vector using Nomic's embedding model."
 
 
 
 
111
  )
112
-
113
- # :white_check_mark: Launch the app
114
  if __name__ == "__main__":
115
  interface.launch()
 
1
+
2
+
3
  # import os
4
  # import gradio as gr
5
  # import numpy as np
6
  # from transformers import AutoTokenizer, AutoModel
7
  # import time
8
+ # import torch
9
+
10
  # # :white_check_mark: Setup environment
11
  # os.makedirs(os.environ.get("HF_HOME", "./hf_cache"), exist_ok=True)
12
  # hf_token = os.environ.get("HF_TOKEN")
13
  # if not hf_token:
14
  # raise EnvironmentError(":x: Environment variable HF_TOKEN is not set.")
15
+
16
+ # # Check for GPU availability
17
+ # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
+ # print(f"Using device: {device}")
19
+
20
  # # :white_check_mark: Load model and tokenizer
21
  # text_tokenizer = AutoTokenizer.from_pretrained(
22
  # "nomic-ai/nomic-embed-text-v1.5",
 
29
  # trust_remote_code=True,
30
  # token=hf_token,
31
  # cache_dir=os.environ["HF_HOME"]
32
+ # ).to(device) # Move model to GPU if available
33
+
34
  # # :white_check_mark: Embedding function
35
  # def get_text_embeddings(text):
36
  # """
37
  # Converts input text into a dense embedding using the Nomic embedding model.
38
  # These embeddings are used to query Qdrant for semantically relevant document chunks.
39
  # """
40
+ # inputs = text_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device) # Move inputs to same device as model
41
+ # with torch.no_grad(): # Disable gradient calculation for inference
42
+ # outputs = text_model(**inputs)
43
  # embeddings = outputs.last_hidden_state.mean(dim=1)
44
+ # print(embeddings[0].detach().cpu().numpy())
45
+ # return embeddings[0].detach().cpu().numpy()
46
+
47
  # # :white_check_mark: Gradio interface function
48
  # def embed_text_interface(text):
49
+ # strt_time = time.time()
50
  # embedding = get_text_embeddings(text)
51
  # print(f"Total time taken by nomic to embed: {time.time()-strt_time}")
52
+ # return embedding
53
+
54
  # # :white_check_mark: Gradio UI
55
  # interface = gr.Interface(
56
  # fn=embed_text_interface,
 
59
  # title="Text Embedding with Nomic AI",
60
  # description="Enter some text, and get its embedding vector using Nomic's embedding model."
61
  # )
62
+
63
  # # :white_check_mark: Launch the app
64
  # if __name__ == "__main__":
65
  # interface.launch()
 
96
  cache_dir=os.environ["HF_HOME"]
97
  ).to(device) # Move model to GPU if available
98
 
99
+
100
  def get_text_embeddings(text):
101
+ """Returns embedding as NumPy array"""
102
+ inputs = text_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
103
+ with torch.no_grad():
 
 
 
104
  outputs = text_model(**inputs)
105
  embeddings = outputs.last_hidden_state.mean(dim=1)
 
106
  return embeddings[0].detach().cpu().numpy()
107
 
108
+ def format_embedding(embedding):
109
+ """Formats the embedding as 'embedding: [x.xx, x.xx, ...]'"""
110
+ formatted = ", ".join([f"{x:.3f}" for x in embedding])
111
+ return f"embedding: [{formatted}]"
112
+ import json
113
+
114
  def embed_text_interface(text):
115
  strt_time = time.time()
116
  embedding = get_text_embeddings(text)
117
  print(f"Total time taken by nomic to embed: {time.time()-strt_time}")
118
+
119
+ # Convert to list and format for display
120
+ embedding_list = embedding.tolist()
121
+ formatted = {
122
+ "embedding": embedding_list,
123
+ "shape": len(embedding_list)
124
+ }
125
+ return formatted
126
 
 
127
  interface = gr.Interface(
128
  fn=embed_text_interface,
129
+ inputs=gr.Textbox(label="Input Text", lines=5),
130
+ outputs=gr.JSON(label="Embedding Vector"), # Using JSON output
131
+ title="Nomic Text Embeddings",
132
+ description="Returns embeddings as a Python list",
133
+ examples=[
134
+ ["This is a sample text"],
135
+ ["Another example sentence"]
136
+ ]
137
  )
 
 
138
  if __name__ == "__main__":
139
  interface.launch()