Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
from transformers import AutoTokenizer, AutoModel
|
5 |
import time
|
|
|
|
|
6 |
# :white_check_mark: Setup environment
|
7 |
os.makedirs(os.environ.get("HF_HOME", "./hf_cache"), exist_ok=True)
|
8 |
hf_token = os.environ.get("HF_TOKEN")
|
9 |
if not hf_token:
|
10 |
raise EnvironmentError(":x: Environment variable HF_TOKEN is not set.")
|
|
|
|
|
|
|
|
|
|
|
11 |
# :white_check_mark: Load model and tokenizer
|
12 |
text_tokenizer = AutoTokenizer.from_pretrained(
|
13 |
"nomic-ai/nomic-embed-text-v1.5",
|
@@ -20,23 +79,27 @@ text_model = AutoModel.from_pretrained(
|
|
20 |
trust_remote_code=True,
|
21 |
token=hf_token,
|
22 |
cache_dir=os.environ["HF_HOME"]
|
23 |
-
)
|
|
|
24 |
# :white_check_mark: Embedding function
|
25 |
def get_text_embeddings(text):
|
26 |
"""
|
27 |
Converts input text into a dense embedding using the Nomic embedding model.
|
28 |
These embeddings are used to query Qdrant for semantically relevant document chunks.
|
29 |
"""
|
30 |
-
inputs = text_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
31 |
-
|
|
|
32 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
33 |
-
return embeddings[0].
|
|
|
34 |
# :white_check_mark: Gradio interface function
|
35 |
def embed_text_interface(text):
|
36 |
-
strt_time=time.time()
|
37 |
embedding = get_text_embeddings(text)
|
38 |
print(f"Total time taken by nomic to embed: {time.time()-strt_time}")
|
39 |
return str(embedding)
|
|
|
40 |
# :white_check_mark: Gradio UI
|
41 |
interface = gr.Interface(
|
42 |
fn=embed_text_interface,
|
@@ -45,6 +108,7 @@ interface = gr.Interface(
|
|
45 |
title="Text Embedding with Nomic AI",
|
46 |
description="Enter some text, and get its embedding vector using Nomic's embedding model."
|
47 |
)
|
|
|
48 |
# :white_check_mark: Launch the app
|
49 |
if __name__ == "__main__":
|
50 |
interface.launch()
|
|
|
1 |
+
# import os
|
2 |
+
# import gradio as gr
|
3 |
+
# import numpy as np
|
4 |
+
# from transformers import AutoTokenizer, AutoModel
|
5 |
+
# import time
|
6 |
+
# # :white_check_mark: Setup environment
|
7 |
+
# os.makedirs(os.environ.get("HF_HOME", "./hf_cache"), exist_ok=True)
|
8 |
+
# hf_token = os.environ.get("HF_TOKEN")
|
9 |
+
# if not hf_token:
|
10 |
+
# raise EnvironmentError(":x: Environment variable HF_TOKEN is not set.")
|
11 |
+
# # :white_check_mark: Load model and tokenizer
|
12 |
+
# text_tokenizer = AutoTokenizer.from_pretrained(
|
13 |
+
# "nomic-ai/nomic-embed-text-v1.5",
|
14 |
+
# trust_remote_code=True,
|
15 |
+
# token=hf_token,
|
16 |
+
# cache_dir=os.environ["HF_HOME"]
|
17 |
+
# )
|
18 |
+
# text_model = AutoModel.from_pretrained(
|
19 |
+
# "nomic-ai/nomic-embed-text-v1.5",
|
20 |
+
# trust_remote_code=True,
|
21 |
+
# token=hf_token,
|
22 |
+
# cache_dir=os.environ["HF_HOME"]
|
23 |
+
# )
|
24 |
+
# # :white_check_mark: Embedding function
|
25 |
+
# def get_text_embeddings(text):
|
26 |
+
# """
|
27 |
+
# Converts input text into a dense embedding using the Nomic embedding model.
|
28 |
+
# These embeddings are used to query Qdrant for semantically relevant document chunks.
|
29 |
+
# """
|
30 |
+
# inputs = text_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
31 |
+
# outputs = text_model(**inputs)
|
32 |
+
# embeddings = outputs.last_hidden_state.mean(dim=1)
|
33 |
+
# return embeddings[0].detach().numpy()
|
34 |
+
# # :white_check_mark: Gradio interface function
|
35 |
+
# def embed_text_interface(text):
|
36 |
+
# strt_time=time.time()
|
37 |
+
# embedding = get_text_embeddings(text)
|
38 |
+
# print(f"Total time taken by nomic to embed: {time.time()-strt_time}")
|
39 |
+
# return str(embedding)
|
40 |
+
# # :white_check_mark: Gradio UI
|
41 |
+
# interface = gr.Interface(
|
42 |
+
# fn=embed_text_interface,
|
43 |
+
# inputs=gr.Textbox(label="Enter text to embed", lines=5),
|
44 |
+
# outputs=gr.Textbox(label="Embedding vector"),
|
45 |
+
# title="Text Embedding with Nomic AI",
|
46 |
+
# description="Enter some text, and get its embedding vector using Nomic's embedding model."
|
47 |
+
# )
|
48 |
+
# # :white_check_mark: Launch the app
|
49 |
+
# if __name__ == "__main__":
|
50 |
+
# interface.launch()
|
51 |
+
|
52 |
+
|
53 |
import os
|
54 |
import gradio as gr
|
55 |
import numpy as np
|
56 |
from transformers import AutoTokenizer, AutoModel
|
57 |
import time
|
58 |
+
import torch
|
59 |
+
|
60 |
# :white_check_mark: Setup environment
|
61 |
os.makedirs(os.environ.get("HF_HOME", "./hf_cache"), exist_ok=True)
|
62 |
hf_token = os.environ.get("HF_TOKEN")
|
63 |
if not hf_token:
|
64 |
raise EnvironmentError(":x: Environment variable HF_TOKEN is not set.")
|
65 |
+
|
66 |
+
# Check for GPU availability
|
67 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
68 |
+
print(f"Using device: {device}")
|
69 |
+
|
70 |
# :white_check_mark: Load model and tokenizer
|
71 |
text_tokenizer = AutoTokenizer.from_pretrained(
|
72 |
"nomic-ai/nomic-embed-text-v1.5",
|
|
|
79 |
trust_remote_code=True,
|
80 |
token=hf_token,
|
81 |
cache_dir=os.environ["HF_HOME"]
|
82 |
+
).to(device) # Move model to GPU if available
|
83 |
+
|
84 |
# :white_check_mark: Embedding function
|
85 |
def get_text_embeddings(text):
|
86 |
"""
|
87 |
Converts input text into a dense embedding using the Nomic embedding model.
|
88 |
These embeddings are used to query Qdrant for semantically relevant document chunks.
|
89 |
"""
|
90 |
+
inputs = text_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device) # Move inputs to same device as model
|
91 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
92 |
+
outputs = text_model(**inputs)
|
93 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
94 |
+
return embeddings[0].cpu().numpy() # Move back to CPU for numpy conversion
|
95 |
+
|
96 |
# :white_check_mark: Gradio interface function
|
97 |
def embed_text_interface(text):
|
98 |
+
strt_time = time.time()
|
99 |
embedding = get_text_embeddings(text)
|
100 |
print(f"Total time taken by nomic to embed: {time.time()-strt_time}")
|
101 |
return str(embedding)
|
102 |
+
|
103 |
# :white_check_mark: Gradio UI
|
104 |
interface = gr.Interface(
|
105 |
fn=embed_text_interface,
|
|
|
108 |
title="Text Embedding with Nomic AI",
|
109 |
description="Enter some text, and get its embedding vector using Nomic's embedding model."
|
110 |
)
|
111 |
+
|
112 |
# :white_check_mark: Launch the app
|
113 |
if __name__ == "__main__":
|
114 |
interface.launch()
|