import gradio as gr from sentence_transformers import SentenceTransformer # Load the Nomic embedding model model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True) def get_embedding(text): """Generate an embedding for the input text using Nomic encoder.""" if not text.strip(): return "Please provide some text." # Generate embedding embedding = model.encode([text])[0] # Get the first (and only) embedding # Return embedding as list (more user-friendly in the UI) return embedding.tolist() # Create Gradio interface interface = gr.Interface( fn=get_embedding, inputs=gr.Textbox(lines=5, placeholder="Enter text to embed..."), outputs=gr.JSON(), title="Text Embedding with Nomic Encoder", description="Enter text to get its embedding vector using the Nomic Encoder model." ) # Launch the interface if __name__ == "__main__": interface.launch()