File size: 4,516 Bytes
500c1ba
 
 
 
 
 
 
 
 
 
 
21c27da
 
500c1ba
21c27da
500c1ba
 
 
 
 
 
 
 
 
 
 
21c27da
500c1ba
21c27da
 
 
1f3498e
 
21c27da
 
 
 
 
 
500c1ba
21c27da
 
 
500c1ba
21c27da
 
500c1ba
21c27da
 
 
 
 
 
 
500c1ba
 
 
 
21c27da
500c1ba
 
 
 
 
 
 
21c27da
500c1ba
 
 
 
 
 
 
 
 
 
 
 
 
21c27da
500c1ba
 
 
 
 
 
 
 
 
 
21c27da
500c1ba
 
 
 
 
 
 
 
 
 
 
 
 
21c27da
500c1ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c27da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from huggingface_hub import login
from fastapi import FastAPI, Depends, HTTPException
import logging
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer
from services.qdrant_searcher import QdrantSearcher
from services.openai_service import generate_rag_response
from utils.auth import token_required
from dotenv import load_dotenv
import os

# Load environment variables from .env file
load_dotenv()

# Initialize FastAPI application
app = FastAPI()

os.environ["HF_HOME"] = "/tmp/huggingface_cache"

# Ensure the cache directory exists
cache_dir = os.environ["HF_HOME"]
if not os.path.exists(cache_dir):
    os.makedirs(cache_dir)

# Setup logging
logging.basicConfig(level=logging.INFO)

# Load Hugging Face token from environment variable
huggingface_token = os.getenv('HUGGINGFACE_HUB_TOKEN')
if huggingface_token:
    try:
        # Log in to Hugging Face without adding credentials to Git
        login(token=huggingface_token, add_to_git_credential=False)
        logging.info("Successfully logged into Hugging Face Hub.")
    except Exception as e:
        logging.error(f"Failed to log into Hugging Face Hub: {e}")
        raise HTTPException(status_code=500, detail="Failed to log into Hugging Face Hub.")
else:
    raise ValueError("Hugging Face token is not set. Please set the HUGGINGFACE_HUB_TOKEN environment variable.")

# Initialize the Qdrant searcher
qdrant_url = os.getenv('QDRANT_URL')
access_token = os.getenv('QDRANT_ACCESS_TOKEN')

if not qdrant_url or not access_token:
    raise ValueError("Qdrant URL or Access Token is not set. Please set the QDRANT_URL and QDRANT_ACCESS_TOKEN environment variables.")

# Initialize the SentenceTransformer model
try:
    encoder = SentenceTransformer('nomic-ai/nomic-embed-text-v1.5')
    logging.info("Successfully loaded the SentenceTransformer model.")
except Exception as e:
    logging.error(f"Failed to load the SentenceTransformer model: {e}")
    raise HTTPException(status_code=500, detail="Failed to load the SentenceTransformer model.")

# Initialize the Qdrant searcher
searcher = QdrantSearcher(encoder, qdrant_url, access_token)

# Define the request body models
class SearchDocumentsRequest(BaseModel):
    query: str
    limit: int = 3

class GenerateRAGRequest(BaseModel):
    search_query: str

# Define the search documents endpoint
@app.post("/api/search-documents")
async def search_documents(
    body: SearchDocumentsRequest,
    credentials: tuple = Depends(token_required)
):
    customer_id, user_id = credentials

    if not customer_id or not user_id:
        logging.error("Failed to extract customer_id or user_id from the JWT token.")
        raise HTTPException(status_code=401, detail="Invalid token: missing customer_id or user_id")

    logging.info("Received request to search documents")
    try:
        hits, error = searcher.search_documents("documents", body.query, user_id, body.limit)
        
        if error:
            logging.error(f"Search documents error: {error}")
            raise HTTPException(status_code=500, detail=error)

        return hits
    except Exception as e:
        logging.error(f"Unexpected error: {e}")
        raise HTTPException(status_code=500, detail=str(e))

# Define the generate RAG response endpoint
@app.post("/api/generate-rag-response")
async def generate_rag_response_api(
    body: GenerateRAGRequest,
    credentials: tuple = Depends(token_required)
):
    customer_id, user_id = credentials

    if not customer_id or not user_id:
        logging.error("Failed to extract customer_id or user_id from the JWT token.")
        raise HTTPException(status_code=401, detail="Invalid token: missing customer_id or user_id")

    logging.info("Received request to generate RAG response")
    try:
        hits, error = searcher.search_documents("documents", body.search_query, user_id)
        
        if error:
            logging.error(f"Search documents error: {error}")
            raise HTTPException(status_code=500, detail=error)

        response, error = generate_rag_response(hits, body.search_query)
        
        if error:
            logging.error(f"Generate RAG response error: {error}")
            raise HTTPException(status_code=500, detail=error)

        return {"response": response}
    except Exception as e:
        logging.error(f"Unexpected error: {e}")
        raise HTTPException(status_code=500, detail=str(e))

if __name__ == '__main__':
    import uvicorn
    uvicorn.run(app, host='0.0.0.0', port=8000)