vhr1007 commited on
Commit
a8d0530
·
verified ·
1 Parent(s): b05996b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -58
app.py CHANGED
@@ -1,63 +1,36 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
 
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+
4
+ model_name = "huggingface/llama-model"
5
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
6
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
7
+
8
+ def chunk_text(text, chunk_size=512):
9
+ tokens = tokenizer.encode(text, return_tensors="pt", truncation=False)
10
+ chunks = [tokens[0][i:i + chunk_size] for i in range(0, tokens.size(1), chunk_size)]
11
+ return chunks
12
+
13
+ def summarize_chunk(chunk, max_length=50):
14
+ summary_ids = model.generate(chunk.unsqueeze(0), max_length=max_length, min_length=25, length_penalty=2.0, num_beams=4, early_stopping=True)
15
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
16
+ return summary
17
+
18
+ def summarize(text, max_summary_length=50):
19
+ chunks = chunk_text(text)
20
+ summaries = [summarize_chunk(chunk, max_summary_length) for chunk in chunks]
21
+ combined_summary = " ".join(summaries)
22
+ final_summary = summarize_chunk(tokenizer.encode(combined_summary, return_tensors="pt", truncation=True)[0], max_length=max_summary_length)
23
+ return final_summary
24
+
25
+ iface = gr.Interface(
26
+ fn=summarize,
27
+ inputs=[
28
+ gr.inputs.Textbox(lines=10, label="Input Text"),
29
+ gr.inputs.Slider(minimum=10, maximum=100, default=50, label="Max Summary Length (Optional)")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  ],
31
+ outputs="text",
32
+ title="Concise Text Summarization with Llama"
33
  )
34
 
 
35
  if __name__ == "__main__":
36
+ iface.launch()