import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name = "huggingface/llama-model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) def chunk_text(text, chunk_size=512): tokens = tokenizer.encode(text, return_tensors="pt", truncation=False) chunks = [tokens[0][i:i + chunk_size] for i in range(0, tokens.size(1), chunk_size)] return chunks def summarize_chunk(chunk, max_length=50): summary_ids = model.generate(chunk.unsqueeze(0), max_length=max_length, min_length=25, length_penalty=2.0, num_beams=4, early_stopping=True) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary def summarize(text, max_summary_length=50): chunks = chunk_text(text) summaries = [summarize_chunk(chunk, max_summary_length) for chunk in chunks] combined_summary = " ".join(summaries) final_summary = summarize_chunk(tokenizer.encode(combined_summary, return_tensors="pt", truncation=True)[0], max_length=max_summary_length) return final_summary iface = gr.Interface( fn=summarize, inputs=[ gr.inputs.Textbox(lines=10, label="Input Text"), gr.inputs.Slider(minimum=10, maximum=100, default=50, label="Max Summary Length (Optional)") ], outputs="text", title="Concise Text Summarization with Llama" ) if __name__ == "__main__": iface.launch()