treasuremars commited on
Commit
33bbc31
·
verified ·
1 Parent(s): 20be679

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -51
app.py CHANGED
@@ -1,64 +1,112 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
1
+ import streamlit as st
2
+ import os
3
+ from textblob import TextBlob
4
+ from langchain.prompts import PromptTemplate
5
+ from dotenv import load_dotenv
6
+ import pandas as pd
7
+ from langchain_groq import ChatGroq
8
+ from langchain_core.prompts import PromptTemplate
9
+ from langchain_core.output_parsers import StrOutputParser
10
+ from langchain_chroma import Chroma
11
+ from langchain_huggingface import HuggingFaceEmbeddings
12
 
13
+ # Load environment variables
14
+ load_dotenv()
15
+
16
+ # Load the dataset
17
+ df = pd.read_csv('./drugs_side_effects_drugs_com.csv')
18
+ df = df[['drug_name', 'medical_condition', 'side_effects']]
19
+ df.dropna(inplace=True)
20
+
21
+ # Prepare context data for vector store
22
+ context_data = [" | ".join([f"{col}: {df.iloc[i][col]}" for col in df.columns]) for i in range(2)]
23
+
24
+ # Set up Groq LLM and vector store
25
+ groq_key = os.environ.get('gloq_key')
26
+ llm = ChatGroq(model="llama-3.1-70b-versatile", api_key=groq_key)
27
+ embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
28
+ vectorstore = Chroma(
29
+ collection_name="medical_dataset_store",
30
+ embedding_function=embed_model,
31
+ persist_directory="./"
32
+ )
33
+ vectorstore.add_texts(context_data)
34
+ retriever = vectorstore.as_retriever()
35
+
36
+ # Define prompt template
37
+ SYSTEM_PROMPT_GENERAL = """
38
+ You are CareBot, a pharmacist and medical expert known as Treasure. Your goal is to provide empathetic, supportive, and detailed responses tailored to the user's needs.
39
+ Behavior Guidelines:
40
+ 1. Introduction: Greet the user as Treasure during the first interaction.
41
+ 2. Personalization: Adapt responses to the user's tone and emotional state.
42
+ 3. Empathy: Respond warmly to the user's concerns and questions.
43
+ 4. Evidence-Based: Use reliable sources to answer queries. For missing data, advise seeking professional consultation.
44
+ 5. Focus: Avoid providing off-topic information; address the user's query specifically.
45
+ 6. Encouragement: Balance acknowledging concerns with actionable and constructive suggestions.
46
+ 7. Context Integration: Use the given context to deliver accurate and relevant answers without repeating the context explicitly.
47
+
48
+ Objective:
49
+ Deliver thoughtful, empathetic, and medically sound advice based on the user’s query.
50
+
51
+ Response Style:
52
+ - Detailed but concise
53
+ - Professional, empathetic tone
54
+ - Clear and actionable guidance
55
  """
 
 
 
56
 
57
+ rag_prompt_template = PromptTemplate(
58
+ input_variables=["context", "user_input"],
59
+ template="""
60
+ {system_prompt}
61
 
62
+ Context: {context}
63
+
64
+ User: {user_input}
65
+ Assistant:"""
66
+ )
 
 
 
 
67
 
68
+ st.title("CareBot: Your AI Medical Assistant")
 
 
 
 
69
 
70
+ # Initialize session state for chat history
71
+ if "messages" not in st.session_state:
72
+ st.session_state["messages"] = [
73
+ {"role": "assistant", "content": "Hi there! I'm Treasure, your friendly pharmacist. How can I help you today?"}
74
+ ]
75
 
76
+ # Display chat history
77
+ for msg in st.session_state.messages:
78
+ st.chat_message(msg["role"]).write(msg["content"])
79
 
80
+ # User input
81
+ if user_query := st.chat_input("Ask me a medical question, or share your concerns."):
82
+ # Add user message to the session state
83
+ st.session_state.messages.append({"role": "user", "content": user_query})
84
+ st.chat_message("user").write(user_query)
 
 
 
85
 
86
+ # Perform sentiment analysis
87
+ sentiment = TextBlob(user_query).sentiment.polarity
88
 
89
+ # Modify prompt based on sentiment
90
+ system_prompt = SYSTEM_PROMPT_GENERAL
91
+ if sentiment < 0:
92
+ system_prompt += "\nThe user seems upset or worried. Prioritize empathy and reassurance."
93
 
94
+ # Retrieve context from vector store
95
+ context_results = retriever.get_relevant_documents(user_query)
96
+ context = "\n".join([result.page_content for result in context_results])
97
+
98
+ # Format the prompt
99
+ formatted_prompt = rag_prompt_template.format(
100
+ system_prompt=system_prompt,
101
+ context=context,
102
+ user_input=user_query
103
+ )
 
 
 
 
 
 
 
 
104
 
105
+ # Generate response using Groq LLM
106
+ response = ""
107
+ for text in llm.stream(formatted_prompt):
108
+ response += text
109
 
110
+ # Add assistant response to the session state
111
+ st.session_state.messages.append({"role": "assistant", "content": response.strip()})
112
+ st.chat_message("assistant").write(response.strip())