Spaces:
Sleeping
Sleeping
import pandas as pd | |
df = pd.read_csv('./drugs_side_effects_drugs_com.csv') | |
df = df[['drug_name', 'medical_condition', 'side_effects']] | |
df.dropna(inplace=True) | |
context_data = [] | |
for i in range(10): | |
context = "" | |
for j in range(3): | |
context += df.columns[j] | |
context += ": " | |
context += str(df.iloc[i][j]) | |
context += " " | |
context_data.append(context) | |
import os | |
# Get the secret key from the environment | |
groq_key = os.environ.get('gloq_key') | |
## LLM used for RAG | |
from langchain_groq import ChatGroq | |
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key) | |
## Embedding model! | |
from langchain_huggingface import HuggingFaceEmbeddings | |
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") | |
# create vector store! | |
from langchain_chroma import Chroma | |
vectorstore = Chroma( | |
collection_name="medical_dataset_store", | |
embedding_function=embed_model, | |
persist_directory="./", | |
) | |
# add data to vector nstore | |
vectorstore.add_texts(context_data) | |
retriever = vectorstore.as_retriever() | |
from langchain_core.prompts import PromptTemplate | |
template = ("""You are a pharmacist and medical expert. | |
Use the provided context to answer the question. | |
If the question is related to medical condition, drug name | |
and side effects that are not in the context, look online and answer them. | |
If you don't know the answer, say so. Explain your answer in detail. | |
Do not discuss the context in your response; just provide the answer directly. | |
Context: {context} | |
Question: {question} | |
Answer:""") | |
rag_prompt = PromptTemplate.from_template(template) | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.runnables import RunnablePassthrough | |
rag_chain = ( | |
{"context": retriever, "question": RunnablePassthrough()} | |
| rag_prompt | |
| llm | |
| StrOutputParser() | |
) | |
import gradio as gr | |
# Function to stream responses | |
def rag_memory_stream(text): | |
partial_text = "" | |
for new_text in rag_chain.stream(text): # Assuming rag_chain is pre-defined | |
partial_text += new_text | |
yield partial_text | |
# Title and description for the app | |
title = "AI Medical Assistant for Drug Information and Side Effects" | |
description = """ | |
<div class="description"> | |
This AI-powered chatbot is designed to provide reliable information about drugs, their side effects, and related medical conditions. | |
It utilizes the Groq API and LangChain to deliver real-time, accurate responses. | |
Ask questions like: | |
<ul> | |
<li>What are the side effects of taking aspirin daily?</li> | |
<li>What is the recommended treatment for a common cold?</li> | |
<li>What is the disease for constant fatigue and muscle weakness?</li> | |
<li>What are the symptoms of diabetes?</li> | |
<li>How can hypertension be managed?</li> | |
</ul> | |
<strong>Disclaimer:</strong> This chatbot is for informational purposes only and is not a substitute for professional medical advice. | |
</div> | |
""" | |
# Customizing Gradio interface for a better look | |
# HTML for custom styling | |
custom_css = """ | |
body { | |
background-color: #f9f9f9; | |
font-family: Arial, sans-serif; | |
margin: 0; | |
padding: 0; | |
} | |
#interface-container { | |
max-width: 800px; | |
margin: 50px auto; | |
padding: 20px; | |
background: linear-gradient(145deg, #000000, #f0f0f0); | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
border-radius: 10px; | |
border: 1px solid #e0e0e0; | |
} | |
h1 { | |
text-align: center; | |
color: #333; | |
} | |
.description { | |
text-align: justify; | |
color: #000; | |
font-size: 1rem; | |
margin-bottom: 20px; | |
} | |
footer { | |
text-align: center; | |
color: #777; | |
margin-top: 30px; | |
font-size: 0.9rem; | |
} | |
""" | |
# Customizing Gradio interface with additional CSS and content | |
demo = gr.Interface( | |
fn=rag_memory_stream, | |
inputs=gr.Textbox( | |
lines=5, | |
placeholder="Type your medical question here...", | |
label="Your Medical Question" | |
), | |
outputs=gr.Textbox( | |
lines=15, # Reduced line count for better layout | |
label="AI Response" | |
), | |
title=title, | |
description=description, | |
css=custom_css, | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
demo.launch() |