treasuremars commited on
Commit
6773e36
·
verified ·
1 Parent(s): 345d988

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +129 -49
app.py CHANGED
@@ -1,64 +1,144 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
 
60
  )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import pandas as pd
 
2
 
 
 
 
 
3
 
4
+ df = pd.read_csv('./drugs_side_effects_drugs_com.csv')
5
 
6
+ df = df[['drug_name', 'medical_condition', 'side_effects']]
7
+ df.dropna(inplace=True)
 
 
 
 
 
 
 
8
 
9
+ context_data = []
10
+ for i in range(len(df)):
11
+ context = ""
12
+ for j in range(3):
13
+ context += df.columns[j]
14
+ context += ": "
15
+ context += df.iloc[i][j]
16
+ context += " "
17
+ context_data.append(context)
18
 
19
+ import os
20
 
21
+ # Get the secret key from the environment
22
+ groq_key = os.environ.get('gloq_key')
23
 
24
+ ## LLM used for RAG
25
+ from langchain_groq import ChatGroq
 
 
 
 
 
 
26
 
27
+ llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
 
28
 
29
+ ## Embedding model!
30
+ from langchain_huggingface import HuggingFaceEmbeddings
31
+ embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
32
 
33
+ # create vector store!
34
+ from langchain_chroma import Chroma
35
+
36
+ vectorstore = Chroma(
37
+ collection_name="medical_dataset_store",
38
+ embedding_function=embed_model,
39
+ persist_directory="./",
40
+ )
41
+
42
+ # add data to vector nstore
43
+ vectorstore.add_texts(context_data)
44
+
45
+ retriever = vectorstore.as_retriever()
46
+
47
+ from langchain_core.prompts import PromptTemplate
48
+
49
+ template = ("""You are a pharmacist and medical expert.
50
+ Use the provided context to answer the question.
51
+ If you don't know the answer, say so. Explain your answer in detail.
52
+ Do not discuss the context in your response; just provide the answer directly.
53
+
54
+ Context: {context}
55
+
56
+ Question: {question}
57
+
58
+ Answer:""")
59
+
60
+ rag_prompt = PromptTemplate.from_template(template)
61
+
62
+ from langchain_core.output_parsers import StrOutputParser
63
+ from langchain_core.runnables import RunnablePassthrough
64
+
65
+ rag_chain = (
66
+ {"context": retriever, "question": RunnablePassthrough()}
67
+ | rag_prompt
68
+ | llm
69
+ | StrOutputParser()
70
+ )
71
+
72
+
73
+ import gradio as gr
74
+
75
+ # Function to stream responses
76
+ def rag_memory_stream(text):
77
+ partial_text = ""
78
+ for new_text in rag_chain.stream(text): # Assuming rag_chain is pre-defined
79
+ partial_text += new_text
80
+ yield partial_text
81
+
82
+ # Title and description for the app
83
+ title = "AI Medical Assistant for Drug Information and Side Effects"
84
+ description = """
85
+ This AI-powered chatbot is designed to provide reliable information about drugs, their side effects, and related medical conditions.
86
+ It utilizes the Groq API and LangChain to deliver real-time, accurate responses.
87
+
88
+ Ask questions like:
89
+ 1. What are the side effects of taking aspirin daily?
90
+ 2. What is the recommended treatment for a common cold?
91
+ 3. What is the disease for constant fatigue and muscle weakness?
92
+ 4. What are the symptoms of diabetes?
93
+ 5. How can hypertension be managed?
94
+
95
+ **Disclaimer:** This chatbot is for informational purposes only and is not a substitute for professional medical advice.
96
  """
97
+
98
+ # Customizing Gradio interface for a better look
99
+ demo = gr.Interface(
100
+ fn=rag_memory_stream,
101
+ inputs=gr.Textbox(
102
+ lines=2,
103
+ placeholder="Type your medical question here...",
104
+ label="Your Medical Question"
105
+ ),
106
+ outputs=gr.Textbox(
107
+ lines=10,
108
+ label="AI Response"
109
+ ),
110
+ title=title,
111
+ description=description,
112
+ theme="compact", # Adding a compact theme for a polished look
113
+ allow_flagging="never"
114
  )
115
 
116
+ # # Launching the app
117
+ # demo.launch(share=True)
118
+
119
+ # import gradio as gr
120
+
121
+ # def rag_memory_stream(text):
122
+ # partial_text = ""
123
+ # for new_text in rag_chain.stream(text):
124
+ # partial_text += new_text
125
+ # yield partial_text
126
+
127
+ # examples = ['I feel dizzy', 'what is the possible sickness for fatigue']
128
+
129
+
130
+
131
+
132
+ # title = "Real-time AI App with Groq API and LangChain to Answer medical questions"
133
+ # demo = gr.Interface(
134
+ # title=title,
135
+ # fn=rag_memory_stream,
136
+ # inputs="text",
137
+ # outputs="text",
138
+ # examples=examples,
139
+ # allow_flagging="never",
140
+ # )
141
+
142
 
143
  if __name__ == "__main__":
144
+ demo.launch()