Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,144 @@
|
|
1 |
-
import
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
yield response
|
41 |
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"""
|
44 |
-
|
45 |
-
|
46 |
-
demo = gr.
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import pandas as pd
|
|
|
2 |
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
df = pd.read_csv('./drugs_side_effects_drugs_com.csv')
|
5 |
|
6 |
+
df = df[['drug_name', 'medical_condition', 'side_effects']]
|
7 |
+
df.dropna(inplace=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
context_data = []
|
10 |
+
for i in range(len(df)):
|
11 |
+
context = ""
|
12 |
+
for j in range(3):
|
13 |
+
context += df.columns[j]
|
14 |
+
context += ": "
|
15 |
+
context += df.iloc[i][j]
|
16 |
+
context += " "
|
17 |
+
context_data.append(context)
|
18 |
|
19 |
+
import os
|
20 |
|
21 |
+
# Get the secret key from the environment
|
22 |
+
groq_key = os.environ.get('gloq_key')
|
23 |
|
24 |
+
## LLM used for RAG
|
25 |
+
from langchain_groq import ChatGroq
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
|
|
|
28 |
|
29 |
+
## Embedding model!
|
30 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
31 |
+
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
32 |
|
33 |
+
# create vector store!
|
34 |
+
from langchain_chroma import Chroma
|
35 |
+
|
36 |
+
vectorstore = Chroma(
|
37 |
+
collection_name="medical_dataset_store",
|
38 |
+
embedding_function=embed_model,
|
39 |
+
persist_directory="./",
|
40 |
+
)
|
41 |
+
|
42 |
+
# add data to vector nstore
|
43 |
+
vectorstore.add_texts(context_data)
|
44 |
+
|
45 |
+
retriever = vectorstore.as_retriever()
|
46 |
+
|
47 |
+
from langchain_core.prompts import PromptTemplate
|
48 |
+
|
49 |
+
template = ("""You are a pharmacist and medical expert.
|
50 |
+
Use the provided context to answer the question.
|
51 |
+
If you don't know the answer, say so. Explain your answer in detail.
|
52 |
+
Do not discuss the context in your response; just provide the answer directly.
|
53 |
+
|
54 |
+
Context: {context}
|
55 |
+
|
56 |
+
Question: {question}
|
57 |
+
|
58 |
+
Answer:""")
|
59 |
+
|
60 |
+
rag_prompt = PromptTemplate.from_template(template)
|
61 |
+
|
62 |
+
from langchain_core.output_parsers import StrOutputParser
|
63 |
+
from langchain_core.runnables import RunnablePassthrough
|
64 |
+
|
65 |
+
rag_chain = (
|
66 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
67 |
+
| rag_prompt
|
68 |
+
| llm
|
69 |
+
| StrOutputParser()
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
import gradio as gr
|
74 |
+
|
75 |
+
# Function to stream responses
|
76 |
+
def rag_memory_stream(text):
|
77 |
+
partial_text = ""
|
78 |
+
for new_text in rag_chain.stream(text): # Assuming rag_chain is pre-defined
|
79 |
+
partial_text += new_text
|
80 |
+
yield partial_text
|
81 |
+
|
82 |
+
# Title and description for the app
|
83 |
+
title = "AI Medical Assistant for Drug Information and Side Effects"
|
84 |
+
description = """
|
85 |
+
This AI-powered chatbot is designed to provide reliable information about drugs, their side effects, and related medical conditions.
|
86 |
+
It utilizes the Groq API and LangChain to deliver real-time, accurate responses.
|
87 |
+
|
88 |
+
Ask questions like:
|
89 |
+
1. What are the side effects of taking aspirin daily?
|
90 |
+
2. What is the recommended treatment for a common cold?
|
91 |
+
3. What is the disease for constant fatigue and muscle weakness?
|
92 |
+
4. What are the symptoms of diabetes?
|
93 |
+
5. How can hypertension be managed?
|
94 |
+
|
95 |
+
**Disclaimer:** This chatbot is for informational purposes only and is not a substitute for professional medical advice.
|
96 |
"""
|
97 |
+
|
98 |
+
# Customizing Gradio interface for a better look
|
99 |
+
demo = gr.Interface(
|
100 |
+
fn=rag_memory_stream,
|
101 |
+
inputs=gr.Textbox(
|
102 |
+
lines=2,
|
103 |
+
placeholder="Type your medical question here...",
|
104 |
+
label="Your Medical Question"
|
105 |
+
),
|
106 |
+
outputs=gr.Textbox(
|
107 |
+
lines=10,
|
108 |
+
label="AI Response"
|
109 |
+
),
|
110 |
+
title=title,
|
111 |
+
description=description,
|
112 |
+
theme="compact", # Adding a compact theme for a polished look
|
113 |
+
allow_flagging="never"
|
114 |
)
|
115 |
|
116 |
+
# # Launching the app
|
117 |
+
# demo.launch(share=True)
|
118 |
+
|
119 |
+
# import gradio as gr
|
120 |
+
|
121 |
+
# def rag_memory_stream(text):
|
122 |
+
# partial_text = ""
|
123 |
+
# for new_text in rag_chain.stream(text):
|
124 |
+
# partial_text += new_text
|
125 |
+
# yield partial_text
|
126 |
+
|
127 |
+
# examples = ['I feel dizzy', 'what is the possible sickness for fatigue']
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
# title = "Real-time AI App with Groq API and LangChain to Answer medical questions"
|
133 |
+
# demo = gr.Interface(
|
134 |
+
# title=title,
|
135 |
+
# fn=rag_memory_stream,
|
136 |
+
# inputs="text",
|
137 |
+
# outputs="text",
|
138 |
+
# examples=examples,
|
139 |
+
# allow_flagging="never",
|
140 |
+
# )
|
141 |
+
|
142 |
|
143 |
if __name__ == "__main__":
|
144 |
+
demo.launch()
|