tree3po commited on
Commit
06fb948
·
verified ·
1 Parent(s): d746f7e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -27
app.py CHANGED
@@ -60,15 +60,6 @@ def run_llm(input_text,history):
60
  qur= hf.embed_query(input_text)
61
  docs = db.similarity_search_by_vector(qur, k=3)
62
 
63
- '''if len(docs) >2:
64
-
65
- doc_list = str(docs).split(" ")
66
- if len(doc_list) > MAX_TOKENS:
67
- doc_cnt = int(len(doc_list) / MAX_TOKENS)
68
- print(doc_cnt)
69
- for ea in doc_cnt:'''
70
-
71
-
72
  print(docs)
73
 
74
  callbacks = [StreamingStdOutCallbackHandler()]
@@ -85,30 +76,12 @@ def run_llm(input_text,history):
85
  streaming=True,
86
  huggingfacehub_api_token=token,
87
  )
88
-
89
-
90
- '''llm=HuggingFaceEndpoint(
91
- endpoint_url=repo_id,
92
- streaming=True,
93
- max_new_tokens=2400,
94
- huggingfacehub_api_token=token)'''
95
- print(input_text)
96
- print(history)
97
  out=""
98
  #prompt = ChatPromptTemplate.from_messages(
99
- sys_prompt = f"Use this data to help answer users questions: {str(docs)}"
100
- user_prompt = f"{input_text}"
101
  prompt=[
102
  {"role": "system", "content": f"[INST] Use this data to help answer users questions: {str(docs)} [/INST]"},
103
  {"role": "user", "content": f"[INST]{input_text}[/INST]"},
104
  ]
105
- #chat = ChatHuggingFace(llm=llm, verbose=True)
106
- messages = [
107
- ("system", f"[INST] Use this data to help answer users questions: {str(docs)} [/INST]"),
108
- ("user", f"[INST]{input_text}[/INST]"),
109
- ]
110
-
111
- #yield(llm.invoke(prompt))
112
 
113
  t=llm.invoke(prompt)
114
  for chunk in t:
 
60
  qur= hf.embed_query(input_text)
61
  docs = db.similarity_search_by_vector(qur, k=3)
62
 
 
 
 
 
 
 
 
 
 
63
  print(docs)
64
 
65
  callbacks = [StreamingStdOutCallbackHandler()]
 
76
  streaming=True,
77
  huggingfacehub_api_token=token,
78
  )
 
 
 
 
 
 
 
 
 
79
  out=""
80
  #prompt = ChatPromptTemplate.from_messages(
 
 
81
  prompt=[
82
  {"role": "system", "content": f"[INST] Use this data to help answer users questions: {str(docs)} [/INST]"},
83
  {"role": "user", "content": f"[INST]{input_text}[/INST]"},
84
  ]
 
 
 
 
 
 
 
85
 
86
  t=llm.invoke(prompt)
87
  for chunk in t: