Update app.py
Browse files
app.py
CHANGED
@@ -60,15 +60,6 @@ def run_llm(input_text,history):
|
|
60 |
qur= hf.embed_query(input_text)
|
61 |
docs = db.similarity_search_by_vector(qur, k=3)
|
62 |
|
63 |
-
'''if len(docs) >2:
|
64 |
-
|
65 |
-
doc_list = str(docs).split(" ")
|
66 |
-
if len(doc_list) > MAX_TOKENS:
|
67 |
-
doc_cnt = int(len(doc_list) / MAX_TOKENS)
|
68 |
-
print(doc_cnt)
|
69 |
-
for ea in doc_cnt:'''
|
70 |
-
|
71 |
-
|
72 |
print(docs)
|
73 |
|
74 |
callbacks = [StreamingStdOutCallbackHandler()]
|
@@ -85,30 +76,12 @@ def run_llm(input_text,history):
|
|
85 |
streaming=True,
|
86 |
huggingfacehub_api_token=token,
|
87 |
)
|
88 |
-
|
89 |
-
|
90 |
-
'''llm=HuggingFaceEndpoint(
|
91 |
-
endpoint_url=repo_id,
|
92 |
-
streaming=True,
|
93 |
-
max_new_tokens=2400,
|
94 |
-
huggingfacehub_api_token=token)'''
|
95 |
-
print(input_text)
|
96 |
-
print(history)
|
97 |
out=""
|
98 |
#prompt = ChatPromptTemplate.from_messages(
|
99 |
-
sys_prompt = f"Use this data to help answer users questions: {str(docs)}"
|
100 |
-
user_prompt = f"{input_text}"
|
101 |
prompt=[
|
102 |
{"role": "system", "content": f"[INST] Use this data to help answer users questions: {str(docs)} [/INST]"},
|
103 |
{"role": "user", "content": f"[INST]{input_text}[/INST]"},
|
104 |
]
|
105 |
-
#chat = ChatHuggingFace(llm=llm, verbose=True)
|
106 |
-
messages = [
|
107 |
-
("system", f"[INST] Use this data to help answer users questions: {str(docs)} [/INST]"),
|
108 |
-
("user", f"[INST]{input_text}[/INST]"),
|
109 |
-
]
|
110 |
-
|
111 |
-
#yield(llm.invoke(prompt))
|
112 |
|
113 |
t=llm.invoke(prompt)
|
114 |
for chunk in t:
|
|
|
60 |
qur= hf.embed_query(input_text)
|
61 |
docs = db.similarity_search_by_vector(qur, k=3)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
print(docs)
|
64 |
|
65 |
callbacks = [StreamingStdOutCallbackHandler()]
|
|
|
76 |
streaming=True,
|
77 |
huggingfacehub_api_token=token,
|
78 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
out=""
|
80 |
#prompt = ChatPromptTemplate.from_messages(
|
|
|
|
|
81 |
prompt=[
|
82 |
{"role": "system", "content": f"[INST] Use this data to help answer users questions: {str(docs)} [/INST]"},
|
83 |
{"role": "user", "content": f"[INST]{input_text}[/INST]"},
|
84 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
t=llm.invoke(prompt)
|
87 |
for chunk in t:
|