Spaces:
Runtime error
Runtime error
File size: 12,330 Bytes
581eeac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
from functools import partial
import math
import chex
import jax
import jax.numpy as jnp
from flax.serialization import to_state_dict
from jax2d.engine import (
calculate_collision_matrix,
calc_inverse_mass_polygon,
calc_inverse_mass_circle,
calc_inverse_inertia_circle,
calc_inverse_inertia_polygon,
recalculate_mass_and_inertia,
select_shape,
PhysicsEngine,
)
from jax2d.sim_state import SimState, RigidBody, Joint, Thruster
from jax2d.maths import rmat
from kinetix.environment.env_state import EnvParams, EnvState, StaticEnvParams
from kinetix.environment.ued.mutators import (
mutate_add_connected_shape_proper,
mutate_add_shape,
mutate_add_connected_shape,
mutate_add_thruster,
)
from kinetix.environment.ued.ued_state import UEDParams
from kinetix.environment.ued.util import (
get_role,
sample_dimensions,
is_space_for_shape,
random_position_on_polygon,
random_position_on_circle,
are_there_shapes_present,
is_space_for_joint,
)
from kinetix.environment.utils import permute_state
from kinetix.util.saving import load_world_state_pickle
from flax import struct
from kinetix.environment.env import create_empty_env
@partial(jax.jit, static_argnums=(1, 3, 5, 6, 7, 8, 9, 10))
def create_vmapped_filtered_distribution(
rng,
level_sampler,
env_params: EnvParams,
static_env_params: StaticEnvParams,
ued_params: UEDParams,
n_samples: int,
env,
do_filter_levels: bool,
level_filter_sample_ratio: int,
env_size_name: str,
level_filter_n_steps: int,
):
if do_filter_levels and level_filter_n_steps > 0:
sample_ratio = level_filter_sample_ratio
n_unfiltered_samples = sample_ratio * n_samples
rng, _rng = jax.random.split(rng)
_rngs = jax.random.split(_rng, n_unfiltered_samples)
# unfiltered_levels = jax.vmap(level_sampler, in_axes=(0, None, None, None, None))(
# _rngs, env_params, static_env_params, ued_params, env_size_name
# )
unfiltered_levels = jax.vmap(level_sampler, in_axes=(0,))(_rngs)
#
# No-op filtering
def _noop_step(states, rng):
rng, _rng = jax.random.split(rng)
_rngs = jax.random.split(_rng, n_unfiltered_samples)
action = jnp.zeros((n_unfiltered_samples, *env.action_space(env_params).shape), dtype=jnp.int32)
obs, states, reward, done, info = jax.vmap(env.step, in_axes=(0, 0, 0, None))(
_rngs, states, action, env_params
)
return states, (done, reward)
# Wrap levels
rng, _rng = jax.random.split(rng)
_rngs = jax.random.split(_rng, n_unfiltered_samples)
obsv, unfiltered_levels_wrapped = jax.vmap(env.reset_to_level, in_axes=(0, 0, None))(
_rngs, unfiltered_levels, env_params
)
rng, _rng = jax.random.split(rng)
_rngs = jax.random.split(_rng, level_filter_n_steps)
_, (done, rewards) = jax.lax.scan(_noop_step, unfiltered_levels_wrapped, xs=_rngs)
done_indexes = jnp.argmax(done, axis=0)
done_rewards = rewards[done_indexes, jnp.arange(n_unfiltered_samples)]
noop_solved_indexes = done_rewards > 0.5
p = noop_solved_indexes * 0.001 + (1 - noop_solved_indexes) * 1.0
p /= p.sum()
rng, _rng = jax.random.split(rng)
level_indexes = jax.random.choice(
_rng, jnp.arange(n_unfiltered_samples), shape=(n_samples,), replace=False, p=p
)
levels = jax.tree.map(lambda x: x[level_indexes], unfiltered_levels)
else:
rng, _rng = jax.random.split(rng)
_rngs = jax.random.split(_rng, n_samples)
levels = jax.vmap(level_sampler, in_axes=(0,))(_rngs)
return levels
@partial(jax.jit, static_argnums=(1, 3, 4, 5))
def sample_kinetix_level(
rng,
engine: PhysicsEngine,
env_params: EnvParams,
static_env_params: StaticEnvParams,
ued_params: UEDParams,
env_size_name: str = "l",
):
rng, _rng = jax.random.split(rng)
_rngs = jax.random.split(_rng, 12)
small_force_no_fixate = env_size_name == "s"
# Start with empty state
state = create_empty_env(static_env_params)
# Set the floor
prob_of_floor_colour = jnp.array(
[
ued_params.floor_prob_normal,
ued_params.floor_prob_green,
ued_params.floor_prob_blue,
ued_params.floor_prob_red,
]
)
floor_colour = jax.random.choice(_rngs[0], jnp.arange(4), p=prob_of_floor_colour)
state = state.replace(polygon_shape_roles=state.polygon_shape_roles.at[0].set(floor_colour))
# When we add shapes we don't want them to collide with already existing shapes
def _choose_proposal_with_least_collisions(proposals, bias=None):
rr, cr, cc = jax.vmap(engine.calculate_collision_manifolds)(proposals)
rr_collisions = jnp.sum(jnp.sum(rr.active.astype(jnp.int32), axis=-1), axis=-1)
cr_collisions = jnp.sum(cr.active.astype(jnp.int32), axis=-1)
cc_collisions = jnp.sum(cc.active.astype(jnp.int32), axis=-1)
all_collisions = jnp.concatenate(
[rr_collisions[:, None], cr_collisions[:, None], cc_collisions[:, None]], axis=1
)
num_collisions = jnp.sum(all_collisions, axis=-1)
if bias is not None:
num_collisions = num_collisions + bias
chosen_addition_idx = jnp.argmin(num_collisions)
return jax.tree.map(lambda x: x[chosen_addition_idx], proposals)
def _add_filtered_shape(rng, state, force_no_fixate=False):
rng, _rng = jax.random.split(rng)
_rngs = jax.random.split(_rng, ued_params.add_shape_n_proposals)
proposed_additions = jax.vmap(mutate_add_shape, in_axes=(0, None, None, None, None, None))(
_rngs,
state,
env_params,
static_env_params,
ued_params,
jnp.logical_or(force_no_fixate, small_force_no_fixate),
)
return _choose_proposal_with_least_collisions(proposed_additions)
def _add_filtered_connected_shape(rng, state, force_rjoint=False):
rng, _rng = jax.random.split(rng)
_rngs = jax.random.split(_rng, ued_params.add_shape_n_proposals)
proposed_additions, valid = jax.vmap(mutate_add_connected_shape, in_axes=(0, None, None, None, None, None))(
_rngs, state, env_params, static_env_params, ued_params, force_rjoint
)
bias = (jnp.ones(ued_params.add_shape_n_proposals) - 1 * valid) * ued_params.connect_no_visibility_bias
return _choose_proposal_with_least_collisions(proposed_additions, bias=bias)
# Add green and blue - make sure they're not both fixated
force_green_no_fixate = (jax.random.uniform(_rngs[1]) < 0.5) | (state.polygon_shape_roles[0] == 2)
state = _add_filtered_shape(_rngs[2], state, force_green_no_fixate)
state = _add_filtered_shape(_rngs[3], state, ~force_green_no_fixate)
# Forced controls
forced_control = jnp.array([[0, 1], [1, 0], [1, 1]])[jax.random.randint(_rngs[4], (), 0, 3)]
force_thruster, force_motor = forced_control[0], forced_control[1]
# Forced motor
state = jax.lax.cond(
force_motor,
lambda: _add_filtered_connected_shape(_rngs[5], state, force_rjoint=True), # force the rjoint
lambda: _add_filtered_shape(_rngs[6], state),
)
# Forced thruster
state = jax.lax.cond(
force_thruster,
lambda: mutate_add_thruster(_rngs[7], state, env_params, static_env_params, ued_params),
lambda: state,
)
# Add rest of shapes
n_shapes_to_add = (
static_env_params.num_polygons + static_env_params.num_circles - 3 - static_env_params.num_static_fixated_polys
)
def _add_shape(state, rng):
rng, _rng = jax.random.split(rng)
_rngs = jax.random.split(_rng, 3)
shape_add_type = jax.random.choice(
_rngs[0],
jnp.arange(3),
p=jnp.array(
[ued_params.add_connected_shape_chance, ued_params.add_shape_chance, ued_params.add_no_shape_chance]
),
)
state = jax.lax.switch(
shape_add_type,
[
lambda: _add_filtered_connected_shape(_rngs[1], state),
lambda: _add_filtered_shape(_rngs[2], state),
lambda: state,
],
)
return state, None
state, _ = jax.lax.scan(_add_shape, state, jax.random.split(_rngs[8], n_shapes_to_add))
# Add thrusters
n_thrusters_to_add = static_env_params.num_thrusters - 1
def _add_thruster(state, rng):
rng, _rng = jax.random.split(rng)
_rngs = jax.random.split(_rng, 3)
state = jax.lax.cond(
jax.random.uniform(_rngs[0]) < ued_params.add_thruster_chance,
lambda: mutate_add_thruster(_rngs[1], state, env_params, static_env_params, ued_params),
lambda: state,
)
return state, None
state, _ = jax.lax.scan(_add_thruster, state, jax.random.split(_rngs[9], n_thrusters_to_add))
# Randomly swap green and blue to remove left-right bias
def _swap_roles(do_swap_roles, roles):
role1 = roles == 1
role2 = roles == 2
swapped_roles = roles * ~(role1 | role2) + role1.astype(int) * 2 + role2.astype(int) * 1
return jax.lax.select(do_swap_roles, swapped_roles, roles)
do_swap_roles = jax.random.uniform(_rngs[10], shape=()) < 0.5
# Don't want to swap if floor is non-standard
do_swap_roles &= state.polygon_shape_roles[0] == 0
state = state.replace(
polygon_shape_roles=_swap_roles(do_swap_roles, state.polygon_shape_roles),
circle_shape_roles=_swap_roles(do_swap_roles, state.circle_shape_roles),
)
return permute_state(_rngs[11], state, static_env_params)
@partial(jax.jit, static_argnums=(2, 4, 5))
def create_random_starting_distribution(
rng,
env_params: EnvParams,
static_env_params: StaticEnvParams,
ued_params: UEDParams,
env_size_name: str,
controllable=True,
):
rng, _rng = jax.random.split(rng)
_rngs = jax.random.split(_rng, 15)
d = to_state_dict(ued_params)
ued_params = UEDParams(
**(
d
| dict(
goal_body_size_factor=2.0,
thruster_power_multiplier=2.0,
max_shape_size=0.5,
)
),
)
prob_of_large_shapes = 0.05
ued_params_large_shapes = ued_params.replace(
max_shape_size=static_env_params.max_shape_size * 1.0, goal_body_size_factor=1.0
)
state = create_empty_env(env_params, static_env_params)
def _get_ued_params(rng):
rng, _rng, _rng2 = jax.random.split(rng, 3)
large_shapes = jax.random.uniform(_rng) < prob_of_large_shapes
params_to_use = jax.tree.map(
lambda x, y: jax.lax.select(large_shapes, x, y), ued_params_large_shapes, ued_params
)
return params_to_use
def _my_add_shape(rng, state):
rng, _rng, _rng2 = jax.random.split(rng, 3)
return mutate_add_shape(_rng, state, env_params, static_env_params, _get_ued_params(_rng2))
def _my_add_connected_shape(rng, state, **kwargs):
rng, _rng, _rng2 = jax.random.split(rng, 3)
return mutate_add_connected_shape_proper(
_rng, state, env_params, static_env_params, _get_ued_params(_rng2), **kwargs
)
# Add the green thing and blue thing
state = _my_add_shape(_rngs[0], state)
state = _my_add_shape(_rngs[1], state)
if controllable:
# Forced controls
forced_control = jnp.array([[0, 1], [1, 0], [1, 1]])[jax.random.randint(_rngs[2], (), 0, 3)]
force_thruster, force_motor = forced_control[0], forced_control[1]
# Forced motor
state = jax.lax.cond(
force_motor,
lambda: _my_add_connected_shape(_rngs[3], state, force_rjoint=True), # force the rjoint
lambda: state,
)
# Forced thruster
state = jax.lax.cond(
force_thruster,
lambda: mutate_add_thruster(_rngs[4], state, env_params, static_env_params, ued_params),
lambda: state,
)
return permute_state(_rngs[7], state, static_env_params)
|