File size: 12,330 Bytes
581eeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from functools import partial
import math

import chex
import jax
import jax.numpy as jnp
from flax.serialization import to_state_dict
from jax2d.engine import (
    calculate_collision_matrix,
    calc_inverse_mass_polygon,
    calc_inverse_mass_circle,
    calc_inverse_inertia_circle,
    calc_inverse_inertia_polygon,
    recalculate_mass_and_inertia,
    select_shape,
    PhysicsEngine,
)
from jax2d.sim_state import SimState, RigidBody, Joint, Thruster
from jax2d.maths import rmat
from kinetix.environment.env_state import EnvParams, EnvState, StaticEnvParams
from kinetix.environment.ued.mutators import (
    mutate_add_connected_shape_proper,
    mutate_add_shape,
    mutate_add_connected_shape,
    mutate_add_thruster,
)
from kinetix.environment.ued.ued_state import UEDParams
from kinetix.environment.ued.util import (
    get_role,
    sample_dimensions,
    is_space_for_shape,
    random_position_on_polygon,
    random_position_on_circle,
    are_there_shapes_present,
    is_space_for_joint,
)
from kinetix.environment.utils import permute_state
from kinetix.util.saving import load_world_state_pickle
from flax import struct
from kinetix.environment.env import create_empty_env


@partial(jax.jit, static_argnums=(1, 3, 5, 6, 7, 8, 9, 10))
def create_vmapped_filtered_distribution(
    rng,
    level_sampler,
    env_params: EnvParams,
    static_env_params: StaticEnvParams,
    ued_params: UEDParams,
    n_samples: int,
    env,
    do_filter_levels: bool,
    level_filter_sample_ratio: int,
    env_size_name: str,
    level_filter_n_steps: int,
):

    if do_filter_levels and level_filter_n_steps > 0:
        sample_ratio = level_filter_sample_ratio
        n_unfiltered_samples = sample_ratio * n_samples
        rng, _rng = jax.random.split(rng)
        _rngs = jax.random.split(_rng, n_unfiltered_samples)

        # unfiltered_levels = jax.vmap(level_sampler, in_axes=(0, None, None, None, None))(
        #     _rngs, env_params, static_env_params, ued_params, env_size_name
        # )
        unfiltered_levels = jax.vmap(level_sampler, in_axes=(0,))(_rngs)
        #

        # No-op filtering

        def _noop_step(states, rng):
            rng, _rng = jax.random.split(rng)
            _rngs = jax.random.split(_rng, n_unfiltered_samples)

            action = jnp.zeros((n_unfiltered_samples, *env.action_space(env_params).shape), dtype=jnp.int32)

            obs, states, reward, done, info = jax.vmap(env.step, in_axes=(0, 0, 0, None))(
                _rngs, states, action, env_params
            )

            return states, (done, reward)

        # Wrap levels
        rng, _rng = jax.random.split(rng)
        _rngs = jax.random.split(_rng, n_unfiltered_samples)
        obsv, unfiltered_levels_wrapped = jax.vmap(env.reset_to_level, in_axes=(0, 0, None))(
            _rngs, unfiltered_levels, env_params
        )

        rng, _rng = jax.random.split(rng)
        _rngs = jax.random.split(_rng, level_filter_n_steps)
        _, (done, rewards) = jax.lax.scan(_noop_step, unfiltered_levels_wrapped, xs=_rngs)

        done_indexes = jnp.argmax(done, axis=0)
        done_rewards = rewards[done_indexes, jnp.arange(n_unfiltered_samples)]

        noop_solved_indexes = done_rewards > 0.5
        p = noop_solved_indexes * 0.001 + (1 - noop_solved_indexes) * 1.0
        p /= p.sum()

        rng, _rng = jax.random.split(rng)
        level_indexes = jax.random.choice(
            _rng, jnp.arange(n_unfiltered_samples), shape=(n_samples,), replace=False, p=p
        )

        levels = jax.tree.map(lambda x: x[level_indexes], unfiltered_levels)

    else:
        rng, _rng = jax.random.split(rng)
        _rngs = jax.random.split(_rng, n_samples)

        levels = jax.vmap(level_sampler, in_axes=(0,))(_rngs)

    return levels


@partial(jax.jit, static_argnums=(1, 3, 4, 5))
def sample_kinetix_level(
    rng,
    engine: PhysicsEngine,
    env_params: EnvParams,
    static_env_params: StaticEnvParams,
    ued_params: UEDParams,
    env_size_name: str = "l",
):
    rng, _rng = jax.random.split(rng)
    _rngs = jax.random.split(_rng, 12)

    small_force_no_fixate = env_size_name == "s"

    # Start with empty state
    state = create_empty_env(static_env_params)

    # Set the floor
    prob_of_floor_colour = jnp.array(
        [
            ued_params.floor_prob_normal,
            ued_params.floor_prob_green,
            ued_params.floor_prob_blue,
            ued_params.floor_prob_red,
        ]
    )
    floor_colour = jax.random.choice(_rngs[0], jnp.arange(4), p=prob_of_floor_colour)
    state = state.replace(polygon_shape_roles=state.polygon_shape_roles.at[0].set(floor_colour))

    # When we add shapes we don't want them to collide with already existing shapes
    def _choose_proposal_with_least_collisions(proposals, bias=None):
        rr, cr, cc = jax.vmap(engine.calculate_collision_manifolds)(proposals)

        rr_collisions = jnp.sum(jnp.sum(rr.active.astype(jnp.int32), axis=-1), axis=-1)
        cr_collisions = jnp.sum(cr.active.astype(jnp.int32), axis=-1)
        cc_collisions = jnp.sum(cc.active.astype(jnp.int32), axis=-1)

        all_collisions = jnp.concatenate(
            [rr_collisions[:, None], cr_collisions[:, None], cc_collisions[:, None]], axis=1
        )
        num_collisions = jnp.sum(all_collisions, axis=-1)
        if bias is not None:
            num_collisions = num_collisions + bias

        chosen_addition_idx = jnp.argmin(num_collisions)

        return jax.tree.map(lambda x: x[chosen_addition_idx], proposals)

    def _add_filtered_shape(rng, state, force_no_fixate=False):
        rng, _rng = jax.random.split(rng)
        _rngs = jax.random.split(_rng, ued_params.add_shape_n_proposals)
        proposed_additions = jax.vmap(mutate_add_shape, in_axes=(0, None, None, None, None, None))(
            _rngs,
            state,
            env_params,
            static_env_params,
            ued_params,
            jnp.logical_or(force_no_fixate, small_force_no_fixate),
        )

        return _choose_proposal_with_least_collisions(proposed_additions)

    def _add_filtered_connected_shape(rng, state, force_rjoint=False):
        rng, _rng = jax.random.split(rng)
        _rngs = jax.random.split(_rng, ued_params.add_shape_n_proposals)

        proposed_additions, valid = jax.vmap(mutate_add_connected_shape, in_axes=(0, None, None, None, None, None))(
            _rngs, state, env_params, static_env_params, ued_params, force_rjoint
        )

        bias = (jnp.ones(ued_params.add_shape_n_proposals) - 1 * valid) * ued_params.connect_no_visibility_bias

        return _choose_proposal_with_least_collisions(proposed_additions, bias=bias)

    # Add green and blue - make sure they're not both fixated
    force_green_no_fixate = (jax.random.uniform(_rngs[1]) < 0.5) | (state.polygon_shape_roles[0] == 2)
    state = _add_filtered_shape(_rngs[2], state, force_green_no_fixate)
    state = _add_filtered_shape(_rngs[3], state, ~force_green_no_fixate)

    # Forced controls
    forced_control = jnp.array([[0, 1], [1, 0], [1, 1]])[jax.random.randint(_rngs[4], (), 0, 3)]
    force_thruster, force_motor = forced_control[0], forced_control[1]

    # Forced motor
    state = jax.lax.cond(
        force_motor,
        lambda: _add_filtered_connected_shape(_rngs[5], state, force_rjoint=True),  # force the rjoint
        lambda: _add_filtered_shape(_rngs[6], state),
    )

    # Forced thruster
    state = jax.lax.cond(
        force_thruster,
        lambda: mutate_add_thruster(_rngs[7], state, env_params, static_env_params, ued_params),
        lambda: state,
    )

    # Add rest of shapes
    n_shapes_to_add = (
        static_env_params.num_polygons + static_env_params.num_circles - 3 - static_env_params.num_static_fixated_polys
    )

    def _add_shape(state, rng):
        rng, _rng = jax.random.split(rng)
        _rngs = jax.random.split(_rng, 3)
        shape_add_type = jax.random.choice(
            _rngs[0],
            jnp.arange(3),
            p=jnp.array(
                [ued_params.add_connected_shape_chance, ued_params.add_shape_chance, ued_params.add_no_shape_chance]
            ),
        )

        state = jax.lax.switch(
            shape_add_type,
            [
                lambda: _add_filtered_connected_shape(_rngs[1], state),
                lambda: _add_filtered_shape(_rngs[2], state),
                lambda: state,
            ],
        )

        return state, None

    state, _ = jax.lax.scan(_add_shape, state, jax.random.split(_rngs[8], n_shapes_to_add))

    # Add thrusters
    n_thrusters_to_add = static_env_params.num_thrusters - 1

    def _add_thruster(state, rng):
        rng, _rng = jax.random.split(rng)
        _rngs = jax.random.split(_rng, 3)
        state = jax.lax.cond(
            jax.random.uniform(_rngs[0]) < ued_params.add_thruster_chance,
            lambda: mutate_add_thruster(_rngs[1], state, env_params, static_env_params, ued_params),
            lambda: state,
        )

        return state, None

    state, _ = jax.lax.scan(_add_thruster, state, jax.random.split(_rngs[9], n_thrusters_to_add))

    # Randomly swap green and blue to remove left-right bias
    def _swap_roles(do_swap_roles, roles):
        role1 = roles == 1
        role2 = roles == 2

        swapped_roles = roles * ~(role1 | role2) + role1.astype(int) * 2 + role2.astype(int) * 1
        return jax.lax.select(do_swap_roles, swapped_roles, roles)

    do_swap_roles = jax.random.uniform(_rngs[10], shape=()) < 0.5
    # Don't want to swap if floor is non-standard
    do_swap_roles &= state.polygon_shape_roles[0] == 0
    state = state.replace(
        polygon_shape_roles=_swap_roles(do_swap_roles, state.polygon_shape_roles),
        circle_shape_roles=_swap_roles(do_swap_roles, state.circle_shape_roles),
    )

    return permute_state(_rngs[11], state, static_env_params)


@partial(jax.jit, static_argnums=(2, 4, 5))
def create_random_starting_distribution(
    rng,
    env_params: EnvParams,
    static_env_params: StaticEnvParams,
    ued_params: UEDParams,
    env_size_name: str,
    controllable=True,
):
    rng, _rng = jax.random.split(rng)
    _rngs = jax.random.split(_rng, 15)
    d = to_state_dict(ued_params)
    ued_params = UEDParams(
        **(
            d
            | dict(
                goal_body_size_factor=2.0,
                thruster_power_multiplier=2.0,
                max_shape_size=0.5,
            )
        ),
    )

    prob_of_large_shapes = 0.05

    ued_params_large_shapes = ued_params.replace(
        max_shape_size=static_env_params.max_shape_size * 1.0, goal_body_size_factor=1.0
    )

    state = create_empty_env(env_params, static_env_params)

    def _get_ued_params(rng):
        rng, _rng, _rng2 = jax.random.split(rng, 3)
        large_shapes = jax.random.uniform(_rng) < prob_of_large_shapes
        params_to_use = jax.tree.map(
            lambda x, y: jax.lax.select(large_shapes, x, y), ued_params_large_shapes, ued_params
        )
        return params_to_use

    def _my_add_shape(rng, state):
        rng, _rng, _rng2 = jax.random.split(rng, 3)
        return mutate_add_shape(_rng, state, env_params, static_env_params, _get_ued_params(_rng2))

    def _my_add_connected_shape(rng, state, **kwargs):
        rng, _rng, _rng2 = jax.random.split(rng, 3)
        return mutate_add_connected_shape_proper(
            _rng, state, env_params, static_env_params, _get_ued_params(_rng2), **kwargs
        )

    # Add the green thing and blue thing
    state = _my_add_shape(_rngs[0], state)
    state = _my_add_shape(_rngs[1], state)
    if controllable:
        # Forced controls
        forced_control = jnp.array([[0, 1], [1, 0], [1, 1]])[jax.random.randint(_rngs[2], (), 0, 3)]
        force_thruster, force_motor = forced_control[0], forced_control[1]

        # Forced motor
        state = jax.lax.cond(
            force_motor,
            lambda: _my_add_connected_shape(_rngs[3], state, force_rjoint=True),  # force the rjoint
            lambda: state,
        )

        # Forced thruster
        state = jax.lax.cond(
            force_thruster,
            lambda: mutate_add_thruster(_rngs[4], state, env_params, static_env_params, ued_params),
            lambda: state,
        )
    return permute_state(_rngs[7], state, static_env_params)