Spaces:
Sleeping
Sleeping
File size: 3,323 Bytes
e751200 2d673aa c269db1 83bdeb3 c269db1 e751200 2b85a9e 2d673aa e751200 becce92 e751200 500075a e751200 2b85a9e 2d673aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import cv2
import gradio as gr
import supervision as sv
from ultralytics import YOLO
from PIL import Image
import torch
import time
import numpy as np
import uuid
import spaces
print(YOLO)
"""| YOLOv8 | `yolov8n.pt` `yolov8s.pt` `yolov8m.pt` `yolov8l.pt` `yolov8x.pt` …
| YOLOv8-seg | `yolov8n-seg.pt` `yolov8s-seg.pt` `yolov8m-seg.pt` `yolov8l-seg.pt` `yolov8x-seg.pt` …
| YOLOv8-pose | `yolov8n-pose.pt` `yolov8s-pose.pt` `yolov8m-pose.pt` `yolov8l-pose.pt` `yolov8x-pose.pt` `yolov8x-pose…
| YOLOv8-obb | `yolov8n-obb.pt` `yolov8s-obb.pt` `yolov8m-obb.pt` `yolov8l-obb.pt` `yolov8x-obb.pt` …
| YOLOv8-cls | `yolov8n-cls.pt` `yolov8s-cls.pt` `yolov8m-cls.pt` `yolov8l-cls.pt` `yolov8x-cls.pt` """
ver=[6:11]
ltr=["n","s","m","1","x"]
tsk=["","seg","pose","obb","cls"]
#yolov8s.pt
modin=f"yolov{ver[2]}{ltr[1]}-{tsk[0]}.pt"
print(modin)
model = YOLO(modin)
def draw_box(image,det):
height, width, channels = image.shape
for ea in det.xyxy:
#bbox = convert_coords(ea, width, height)
#print(bbox)
start_point = ((int(ea[0]),int(ea[1])))
end_point = ((int(ea[2]),int(ea[3])))
color = (255, 0, 0)
thickness = 2
image = cv2.rectangle(image, start_point, end_point, color, thickness)
return image
@spaces.GPU
def stream_object_detection(video):
SUBSAMPLE=1
cap = cv2.VideoCapture(video)
# This means we will output mp4 videos
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
fps = int(cap.get(cv2.CAP_PROP_FPS))
desired_fps = fps // SUBSAMPLE
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
iterating, frame = cap.read()
n_frames = 0
output_video_name = f"output_{uuid.uuid4()}.mp4"
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
while iterating:
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
result = model(Image.fromarray(frame))[0]
detections = sv.Detections.from_ultralytics(result)
outp = draw_box(frame,detections)
frame = np.array(outp)
# Convert RGB to BGR
frame = frame[:, :, ::-1].copy()
output_video.write(frame)
batch = []
output_video.release()
yield output_video_name
output_video_name = f"output_{uuid.uuid4()}.mp4"
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
iterating, frame = cap.read()
n_frames += 1
with gr.Blocks() as app:
gr.HTML("<div style='font-size: 50px;font-weight: 800;'>Supervision</div><div style='font-size: 30px;'>Video Object Detection</div><div>Github:<a href='https://github.com/roboflow/supervision' target='_blank'>https://github.com/roboflow/supervision</a></div>")
#inp = gr.Image(type="filepath")
with gr.Row():
with gr.Column():
inp = gr.Video()
btn = gr.Button()
outp_v = gr.Video(label="Processed Video", streaming=True, autoplay=True)
outp_j = gr.JSON()
btn.click(stream_object_detection,inp,[outp_v,outp_j])
app.queue().launch() |