Spaces:
Sleeping
Sleeping
File size: 3,088 Bytes
e751200 2d673aa c269db1 731355d c269db1 80826f2 c269db1 80826f2 e1aa30e c269db1 e751200 2b85a9e 435d06a 2b85a9e 718ddba 435d06a 2b85a9e 435d06a 2b85a9e 2d673aa e751200 becce92 e751200 718ddba e751200 500075a e751200 2b85a9e 2d673aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import cv2
import gradio as gr
import supervision as sv
from ultralytics import YOLO
from PIL import Image
import torch
import time
import numpy as np
import uuid
import spaces
ver=[6,7,8,9,10,11]
ltr=["n","s","m","1","x"]
tsk=["","-seg","-pose","-obb","-cls"]
#yolov8s.pt
modin=f"yolov{ver[2]}{ltr[1]}{tsk[0]}.pt"
print(modin)
model = YOLO(modin)
def draw_box(image,det):
height, width, channels = image.shape
for i,ea in enumerate(det.xyxy):
#bbox = convert_coords(ea, width, height)
#print(bbox)
start_point = ((int(ea[0]),int(ea[1])))
end_point = ((int(ea[2]),int(ea[3])))
color = (255, 0, 0)
thickness = 2
label = f'{det.data}'
font = cv2.FONT_HERSHEY_SIMPLEX # Choose a font
font_scale = 1
color = (0, 0, 255) # Blue color
thickness = 2
text_position = (int(ea[0]), int(ea[1]) + 10) # Adjust position as needed
image = cv2.rectangle(image, start_point, end_point, color, thickness)
cv2.putText(image, label, text_position, font, font_scale, color, thickness)
return image
@spaces.GPU
def stream_object_detection(video):
SUBSAMPLE=1
cap = cv2.VideoCapture(video)
# This means we will output mp4 videos
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
fps = int(cap.get(cv2.CAP_PROP_FPS))
desired_fps = fps // SUBSAMPLE
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
iterating, frame = cap.read()
n_frames = 0
output_video_name = f"output_{uuid.uuid4()}.mp4"
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
while iterating:
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
result = model(Image.fromarray(frame))[0]
detections = sv.Detections.from_ultralytics(result)
outp = draw_box(frame,detections)
frame = np.array(outp)
# Convert RGB to BGR
frame = frame[:, :, ::-1].copy()
output_video.write(frame)
batch = []
output_video.release()
yield output_video_name,detections
output_video_name = f"output_{uuid.uuid4()}.mp4"
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
iterating, frame = cap.read()
n_frames += 1
with gr.Blocks() as app:
gr.HTML("<div style='font-size: 50px;font-weight: 800;'>Supervision</div><div style='font-size: 30px;'>Video Object Detection</div><div>Github:<a href='https://github.com/roboflow/supervision' target='_blank'>https://github.com/roboflow/supervision</a></div>")
#inp = gr.Image(type="filepath")
with gr.Row():
with gr.Column():
inp = gr.Video()
btn = gr.Button()
outp_v = gr.Video(label="Processed Video", streaming=True, autoplay=True)
outp_j = gr.JSON()
btn.click(stream_object_detection,inp,[outp_v,outp_j])
app.queue().launch() |