Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from utils import kl, entropy, is_sent_finish, limit_past, bits2int, int2bits | |
# number of bins is 2^block_size | |
# each bin contains vocab_size/2^block_size words | |
def get_bins(vocab_size, block_size): | |
num_bins = 2**block_size | |
words_per_bin = vocab_size/num_bins | |
vocab_ordering = np.arange(vocab_size) | |
np.random.seed(block_size) | |
np.random.shuffle(vocab_ordering) | |
bin2words = [vocab_ordering[int(i*words_per_bin):int((i+1)*words_per_bin)] for i in range(num_bins)] | |
bin2words = [np.array(words) for words in bin2words] | |
words2bin_list = [{i: j for i in bin2words[j]} for j in range(num_bins)] | |
words2bin = {} | |
for d in words2bin_list: | |
words2bin.update(d) | |
return bin2words, words2bin | |
def encode_block(model, enc, message, context, block_size, bin2words, words2bin, finish_sent=False, device='cpu'): | |
length = len(message) | |
context = torch.tensor(context[-1022:], device=device, dtype=torch.long) | |
prev = context | |
output = context | |
past = None | |
total_num = 0 | |
total_num_for_stats = 0 | |
total_log_probs = 0 | |
total_kl = 0 # in bits | |
total_num_sents = 0 | |
with torch.no_grad(): | |
i = 0 | |
sent_finish = False | |
while i < length or (finish_sent and not sent_finish): | |
logits, past = model(prev.unsqueeze(0), past=past) | |
past = limit_past(past) | |
logits[0, -1, -1] = -1e10 # endoftext can't happen | |
logits[0, -1, 628] = -1e10 # 2 newlines can't happen | |
logits = logits[0, -1, :] | |
log_probs = F.log_softmax(logits, dim=-1) | |
filtered_logits = logits.clone() | |
filtered_logits[:] = -1e10 # first set all to 0 | |
if i >= length: | |
_, indices = logits.sort(descending=True) | |
sent_finish = is_sent_finish(indices[0].item(), enc) | |
else: | |
# First calculate logq | |
logq = logits.clone() | |
logq[:] = -1e10 # first set all to 0 | |
for bin_val in range(2**block_size): | |
filtered_logits = logits.clone() | |
filtered_logits[:] = -1e10 # first set all to 0 | |
available_tokens = bin2words[bin_val] | |
filtered_logits[available_tokens] = logits[available_tokens] | |
filtered_logits, indices = filtered_logits.sort(descending=True) | |
logq[indices[0]] = -block_size # in bits | |
logq = logq*0.69315 # in nats | |
q = torch.exp(logq) | |
# Then find the actual word for the right bin | |
m_part = message[i:i+block_size] | |
filtered_logits = logits.clone() | |
filtered_logits[:] = -1e10 # first set all to 0 | |
available_tokens = bin2words[bits2int(m_part)] | |
filtered_logits[available_tokens] = logits[available_tokens] | |
filtered_logits, indices = filtered_logits.sort(descending=True) | |
total_kl += kl(q, logq, log_probs) | |
total_log_probs += log_probs[indices[0]].item() | |
i += block_size | |
total_num_for_stats += 1 | |
total_num += 1 | |
prev = indices[0].view(1) | |
output = torch.cat((output, prev)) | |
avg_NLL = -total_log_probs/total_num_for_stats | |
avg_KL = total_kl/total_num_for_stats | |
words_per_bit = total_num_for_stats/i | |
return output[len(context):].tolist(), avg_NLL, avg_KL, words_per_bit | |
def decode_block(model, enc, text, context, block_size, bin2words, words2bin, device='cpu'): | |
# inp is a list of token indices | |
# context is a list of token indices | |
inp = enc.encode(text) | |
i = 0 | |
while i < len(inp): | |
if inp[i] == 628: | |
inp[i] = 198 | |
inp[i+1:i+1] = [198] | |
i += 2 | |
else: | |
i += 1 | |
context = torch.tensor(context[-1022:], device=device, dtype=torch.long) | |
prev = context | |
past = None | |
message = [] | |
with torch.no_grad(): | |
i = 0 | |
while i < len(inp): | |
if past and past[0].shape[3] >= 1023: | |
raise RuntimeError | |
bin_num = words2bin[inp[i]] | |
logits, past = model(prev.unsqueeze(0), past=past) | |
past = limit_past(past) | |
logits[0, -1, -1] = -1e10 # endoftext can't happen | |
logits[0, -1, 628] = -1e10 # 2 newlines can't happen | |
logits = logits[0, -1, :] | |
filtered_logits = logits.clone() | |
filtered_logits[:] = -1e10 # first set all to 0 | |
available_tokens = bin2words[bin_num] | |
filtered_logits[available_tokens] = logits[available_tokens] | |
filtered_logits, indices = filtered_logits.sort(descending=True) | |
rank = (indices == inp[i]).nonzero().item() | |
# Handle errors that could happen because of BPE | |
if rank > 0: | |
true_token_text = enc.decoder[inp[i]] | |
for bin_num in range(len(bin2words)): | |
filtered_logits = logits.clone() | |
filtered_logits[:] = -1e10 # first set all to 0 | |
available_tokens = bin2words[bin_num] | |
filtered_logits[available_tokens] = logits[available_tokens] | |
filtered_logits, indices = filtered_logits.sort(descending=True) | |
prop_token_text = enc.decoder[indices[0].item()] | |
#print(true_token_text, prop_token_text) | |
# Is there a more likely prefix token that could be the actual token generated? | |
if len(prop_token_text) < len(true_token_text) and \ | |
prop_token_text == true_token_text[:len(prop_token_text)]: | |
suffix = true_token_text[len(prop_token_text):] | |
suffix_tokens = enc.encode(suffix) # a list | |
inp[i] = indices[0].item() | |
inp[i+1:i+1] = suffix_tokens # insert suffix tokens into list | |
break | |
# Is there a more likely longer token that could be the actual token generated? | |
elif len(prop_token_text) > len(true_token_text) and \ | |
true_token_text == prop_token_text[:len(true_token_text)]: | |
whole_text = true_token_text | |
num_extra = 1 | |
while len(whole_text) < len(prop_token_text): | |
whole_text += enc.decoder[inp[i+num_extra]] | |
num_extra += 1 | |
if prop_token_text == whole_text[:len(prop_token_text)]: | |
inp[i] = indices[0].item() | |
for j in range(1, num_extra): | |
del inp[i+j] | |
if len(whole_text) > len(prop_token_text): | |
suffix = whole_text[len(prop_token_text):] | |
suffix_tokens = enc.encode(suffix) # a list | |
inp[i+1:i+1] = suffix_tokens # insert suffix tokens into list | |
break | |
else: | |
print('Unable to fix BPE error: token received: %s=%d, text: %s' % (true_token_text, inp[i], text)) | |
tokens_t = int2bits(bin_num, block_size) | |
message.extend(tokens_t) | |
prev = torch.tensor([inp[i]], device=device, dtype=torch.long) | |
i += 1 | |
return message | |
if __name__ == '__main__': | |
np.random.seed(123) | |
bin2words, words2bin = get_bins(50257, 5) | |
print(words2bin[153]) |