SteganographywithGPT-2 / block_baseline.py
Xinyoumeng233hu's picture
Update block_baseline.py
d6a5fdd
raw
history blame
7.8 kB
import torch
import torch.nn.functional as F
import numpy as np
from utils import kl, entropy, is_sent_finish, limit_past, bits2int, int2bits
# number of bins is 2^block_size
# each bin contains vocab_size/2^block_size words
def get_bins(vocab_size, block_size):
num_bins = 2**block_size
words_per_bin = vocab_size/num_bins
vocab_ordering = np.arange(vocab_size)
np.random.seed(block_size)
np.random.shuffle(vocab_ordering)
bin2words = [vocab_ordering[int(i*words_per_bin):int((i+1)*words_per_bin)] for i in range(num_bins)]
bin2words = [np.array(words) for words in bin2words]
words2bin_list = [{i: j for i in bin2words[j]} for j in range(num_bins)]
words2bin = {}
for d in words2bin_list:
words2bin.update(d)
return bin2words, words2bin
def encode_block(model, enc, message, context, block_size, bin2words, words2bin, finish_sent=False, device='cpu'):
length = len(message)
context = torch.tensor(context[-1022:], device=device, dtype=torch.long)
prev = context
output = context
past = None
total_num = 0
total_num_for_stats = 0
total_log_probs = 0
total_kl = 0 # in bits
total_num_sents = 0
with torch.no_grad():
i = 0
sent_finish = False
while i < length or (finish_sent and not sent_finish):
logits, past = model(prev.unsqueeze(0), past=past)
past = limit_past(past)
logits[0, -1, -1] = -1e10 # endoftext can't happen
logits[0, -1, 628] = -1e10 # 2 newlines can't happen
logits = logits[0, -1, :]
log_probs = F.log_softmax(logits, dim=-1)
filtered_logits = logits.clone()
filtered_logits[:] = -1e10 # first set all to 0
if i >= length:
_, indices = logits.sort(descending=True)
sent_finish = is_sent_finish(indices[0].item(), enc)
else:
# First calculate logq
logq = logits.clone()
logq[:] = -1e10 # first set all to 0
for bin_val in range(2**block_size):
filtered_logits = logits.clone()
filtered_logits[:] = -1e10 # first set all to 0
available_tokens = bin2words[bin_val]
filtered_logits[available_tokens] = logits[available_tokens]
filtered_logits, indices = filtered_logits.sort(descending=True)
logq[indices[0]] = -block_size # in bits
logq = logq*0.69315 # in nats
q = torch.exp(logq)
# Then find the actual word for the right bin
m_part = message[i:i+block_size]
filtered_logits = logits.clone()
filtered_logits[:] = -1e10 # first set all to 0
available_tokens = bin2words[bits2int(m_part)]
filtered_logits[available_tokens] = logits[available_tokens]
filtered_logits, indices = filtered_logits.sort(descending=True)
total_kl += kl(q, logq, log_probs)
total_log_probs += log_probs[indices[0]].item()
i += block_size
total_num_for_stats += 1
total_num += 1
prev = indices[0].view(1)
output = torch.cat((output, prev))
avg_NLL = -total_log_probs/total_num_for_stats
avg_KL = total_kl/total_num_for_stats
words_per_bit = total_num_for_stats/i
return output[len(context):].tolist(), avg_NLL, avg_KL, words_per_bit
def decode_block(model, enc, text, context, block_size, bin2words, words2bin, device='cpu'):
# inp is a list of token indices
# context is a list of token indices
inp = enc.encode(text)
i = 0
while i < len(inp):
if inp[i] == 628:
inp[i] = 198
inp[i+1:i+1] = [198]
i += 2
else:
i += 1
context = torch.tensor(context[-1022:], device=device, dtype=torch.long)
prev = context
past = None
message = []
with torch.no_grad():
i = 0
while i < len(inp):
if past and past[0].shape[3] >= 1023:
raise RuntimeError
bin_num = words2bin[inp[i]]
logits, past = model(prev.unsqueeze(0), past=past)
past = limit_past(past)
logits[0, -1, -1] = -1e10 # endoftext can't happen
logits[0, -1, 628] = -1e10 # 2 newlines can't happen
logits = logits[0, -1, :]
filtered_logits = logits.clone()
filtered_logits[:] = -1e10 # first set all to 0
available_tokens = bin2words[bin_num]
filtered_logits[available_tokens] = logits[available_tokens]
filtered_logits, indices = filtered_logits.sort(descending=True)
rank = (indices == inp[i]).nonzero().item()
# Handle errors that could happen because of BPE
if rank > 0:
true_token_text = enc.decoder[inp[i]]
for bin_num in range(len(bin2words)):
filtered_logits = logits.clone()
filtered_logits[:] = -1e10 # first set all to 0
available_tokens = bin2words[bin_num]
filtered_logits[available_tokens] = logits[available_tokens]
filtered_logits, indices = filtered_logits.sort(descending=True)
prop_token_text = enc.decoder[indices[0].item()]
#print(true_token_text, prop_token_text)
# Is there a more likely prefix token that could be the actual token generated?
if len(prop_token_text) < len(true_token_text) and \
prop_token_text == true_token_text[:len(prop_token_text)]:
suffix = true_token_text[len(prop_token_text):]
suffix_tokens = enc.encode(suffix) # a list
inp[i] = indices[0].item()
inp[i+1:i+1] = suffix_tokens # insert suffix tokens into list
break
# Is there a more likely longer token that could be the actual token generated?
elif len(prop_token_text) > len(true_token_text) and \
true_token_text == prop_token_text[:len(true_token_text)]:
whole_text = true_token_text
num_extra = 1
while len(whole_text) < len(prop_token_text):
whole_text += enc.decoder[inp[i+num_extra]]
num_extra += 1
if prop_token_text == whole_text[:len(prop_token_text)]:
inp[i] = indices[0].item()
for j in range(1, num_extra):
del inp[i+j]
if len(whole_text) > len(prop_token_text):
suffix = whole_text[len(prop_token_text):]
suffix_tokens = enc.encode(suffix) # a list
inp[i+1:i+1] = suffix_tokens # insert suffix tokens into list
break
else:
print('Unable to fix BPE error: token received: %s=%d, text: %s' % (true_token_text, inp[i], text))
tokens_t = int2bits(bin_num, block_size)
message.extend(tokens_t)
prev = torch.tensor([inp[i]], device=device, dtype=torch.long)
i += 1
return message
if __name__ == '__main__':
np.random.seed(123)
bin2words, words2bin = get_bins(50257, 5)
print(words2bin[153])