Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
from huffman import HuffmanCoding | |
from utils import kl, entropy, is_sent_finish, limit_past | |
def encode_huffman(model, enc, message, context, bits_per_word, finish_sent=False, device='cpu'): | |
length = len(message) | |
context = torch.tensor(context[-1022:], device=device, dtype=torch.long) | |
prev = context | |
output = context | |
past = None | |
total_num = 0 | |
total_num_for_stats = 0 | |
total_log_probs = 0 | |
total_kl = 0 # in bits | |
total_num_sents = 0 | |
with torch.no_grad(): | |
i = 0 | |
sent_finish = False | |
while i < length or (finish_sent and not sent_finish): | |
logits, past = model(prev.unsqueeze(0), past=past) | |
past = limit_past(past) | |
logits[0, -1, -1] = -1e10 # endoftext can't happen | |
logits[0, -1, 628] = -1e10 # 2 newlines can't happen | |
logits, indices = logits[0, -1, :].sort(descending=True) | |
# Get the top 2**bits options | |
indices = indices[:2**bits_per_word] | |
log_probs = F.log_softmax(logits, dim=-1)[:2**bits_per_word] | |
probs = torch.exp(log_probs) | |
if i >= length: | |
selection = 0 | |
sent_finish = is_sent_finish(indices[0].item(), enc) | |
else: | |
probs_array = probs.cpu().numpy() | |
coding = HuffmanCoding() | |
coding.make_heap_from_array(probs_array) | |
coding.merge_nodes() | |
root = coding.make_codes() | |
#print(message[i:i+10]) | |
while root.token is None: | |
if i >= length or message[i] == 0: | |
root = root.left | |
else: | |
root = root.right | |
i += 1 | |
selection = root.token | |
logq = torch.tensor([-len(coding.codes[idx]) for idx in range(len(probs_array))], dtype=torch.float, device=device) # in bits | |
logq = logq*0.69315 # in nats | |
q = torch.exp(logq) | |
total_kl += kl(q, logq, log_probs) | |
total_log_probs += log_probs[selection].item() | |
total_num_for_stats += 1 | |
total_num += 1 | |
prev = indices[selection].view(1) | |
output = torch.cat((output, prev)) | |
avg_NLL = -total_log_probs/total_num_for_stats | |
avg_KL = total_kl/total_num_for_stats | |
words_per_bit = total_num_for_stats/i | |
return output[len(context):].tolist(), avg_NLL, avg_KL, words_per_bit | |
def decode_huffman(model, enc, text, context, bits_per_word, device='cpu'): | |
# inp is a list of token indices | |
# context is a list of token indices | |
inp = enc.encode(text) | |
i = 0 | |
while i < len(inp): | |
if inp[i] == 628: | |
inp[i] = 198 | |
inp[i+1:i+1] = [198] | |
i += 2 | |
else: | |
i += 1 | |
context = torch.tensor(context[-1022:], device=device, dtype=torch.long) | |
prev = context | |
past = None | |
message = [] | |
with torch.no_grad(): | |
i = 0 | |
while i < len(inp): | |
if past and past[0].shape[3] >= 1023: | |
raise RuntimeError | |
logits, past = model(prev.unsqueeze(0), past=past) | |
past = limit_past(past) | |
logits[0, -1, -1] = -1e10 # endoftext can't happen | |
logits[0, -1, 628] = -1e10 # 2 newlines can't happen | |
logits, indices = logits[0, -1, :].sort(descending=True) | |
# Get the top 2**bits options | |
indices = indices[:2**bits_per_word] | |
log_probs = F.log_softmax(logits, dim=-1)[:2**bits_per_word] | |
probs = torch.exp(log_probs) | |
if inp[i] not in indices: | |
true_token_text = enc.decoder[inp[i]] | |
for rank_idx in range(2**bits_per_word): | |
prop_token_text = enc.decoder[indices[rank_idx].item()] | |
# common case that is not caught | |
if inp[i] == 128 and indices[rank_idx] == 198: | |
rank = rank_idx | |
inp[i] = indices[rank_idx].item() | |
break | |
# Is there a more likely prefix token that could be the actual token generated? | |
if len(prop_token_text) <= len(true_token_text) and \ | |
prop_token_text == true_token_text[:len(prop_token_text)]: | |
rank = rank_idx | |
suffix = true_token_text[len(prop_token_text):] | |
suffix_tokens = enc.encode(suffix) # a list | |
inp[i] = indices[rank_idx].item() | |
inp[i+1:i+1] = suffix_tokens # insert suffix tokens into list | |
break | |
# Is there a more likely longer token that could be the actual token generated? | |
elif len(prop_token_text) > len(true_token_text) and \ | |
true_token_text == prop_token_text[:len(true_token_text)]: | |
whole_text = true_token_text | |
num_extra = 1 | |
while len(whole_text) < len(prop_token_text): | |
whole_text += enc.decoder[inp[i+num_extra]] | |
num_extra += 1 | |
if prop_token_text == whole_text[:len(prop_token_text)]: | |
rank = rank_idx | |
inp[i] = indices[rank_idx].item() | |
for j in range(1, num_extra): | |
del inp[i+j] | |
if len(whole_text) > len(prop_token_text): | |
suffix = whole_text[len(prop_token_text):] | |
suffix_tokens = enc.encode(suffix) # a list | |
inp[i+1:i+1] = suffix_tokens # insert suffix tokens into list | |
break | |
else: | |
print('Unable to fix BPE error: token received: %s=%d, text: %s' % (true_token_text, inp[i], text)) | |
rank = 0 | |
else: | |
rank = (indices == inp[i]).nonzero().item() | |
probs_array = probs.cpu().numpy() | |
coding = HuffmanCoding() | |
coding.make_heap_from_array(probs_array) | |
coding.merge_nodes() | |
coding.make_codes() | |
tokens_t = map(int, coding.codes[rank]) | |
message.extend(tokens_t) | |
prev = torch.tensor([inp[i]], device=device, dtype=torch.long) | |
i += 1 | |
return message | |