Xinyoumeng233hu's picture
Update meteor.py
0e35ac3
#@title
import torch
import torch.nn.functional as F
import os
from drgb import DRBG
from utils import bin_sort, bits2int, entropy, int2bits, is_sent_finish, kl, limit_past, num_same_from_beg
# Constants for HMAC-DRBG -- MUST CHANGE FOR SECURE IMPLEMENTATION
sample_key = b'0x01'*64
sample_seed_prefix = b'sample'
sample_nonce_counter = b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
def encode_meteor(model, enc, message, context, finish_sent=False, device='cpu', temp=1.0, precision=16, topk=50000, is_sort=False, randomize_key=False, input_key=sample_key, input_nonce=sample_nonce_counter):
if randomize_key:
input_key = os.urandom(64)
mask_generator = DRBG(input_key, sample_seed_prefix + input_nonce)
context = torch.tensor(context[-1022:], device=device, dtype=torch.long)
max_val = 2**precision
threshold = 2**(-precision)
cur_interval = [0, max_val] # bottom inclusive, top exclusive
prev = context
output = context
past = None
total_num = 0
total_num_for_stats = 0
total_log_probs = 0
total_kl = 0 # in bits
total_entropy_ptau = 0
total_num_sents = 0
with torch.no_grad():
i = 0
sent_finish = False
while i < len(message) or (finish_sent and not sent_finish):
logits, past = model(prev.unsqueeze(0), past=past)
past = limit_past(past)
logits[0, -1, -1] = -1e20 # endoftext token can't happen
logits[0, -1, 628] = -1e20 # 2 newlines token can't happen
logits, indices = logits[0, -1, :].sort(descending=True)
logits = logits.double()
logits_temp = logits / temp
probs_temp = F.softmax(logits_temp, dim=0)
log_probs_temp = F.log_softmax(logits_temp, dim=0)
log_probs = F.log_softmax(logits, dim=0)
# conditions for having reached the end of the message
if i >= len(message):
selection = 0
sent_finish = is_sent_finish(indices[selection].item(), enc)
else:
# Cutoff low probabilities that would be rounded to 0
cur_int_range = cur_interval[1]-cur_interval[0]
cur_threshold = 1/cur_int_range
k = min(max(2, (probs_temp < cur_threshold).nonzero()[0].item()), topk)
probs_temp_int = probs_temp[:k] # Cutoff all but top k
old_indices = indices
indices = indices[:k]
# Rescale to correct range
probs_temp_int = probs_temp_int/probs_temp_int.sum()*cur_int_range
entropy_in_this_distribution = entropy(probs_temp, log_probs_temp)
# Round probabilities to integers given precision
probs_temp_int = probs_temp_int.round().long()
if is_sort:
probs_temp_int, indices = bin_sort(probs_temp_int, indices, cur_int_range, entropy_in_this_distribution, device)
cum_probs = probs_temp_int.cumsum(0)
# Remove any elements from the bottom if rounding caused the total prob to be too large
overfill_index = (cum_probs > cur_int_range).nonzero()
if len(overfill_index) > 0:
cum_probs = cum_probs[:overfill_index[0]]
# Add any mass to the top if removing/rounding causes the total prob to be too small
cum_probs += cur_int_range-cum_probs[-1] # add
# Get out resulting probabilities
probs_final = cum_probs.clone()
probs_final[1:] = cum_probs[1:] - cum_probs[:-1]
# Convert to position in range
cum_probs += cur_interval[0]
# Apply the mask to the message
message_bits = message[i:i+precision]
if i+precision > len(message):
message_bits = message_bits + [0]*(i+precision-len(message))
mask_bits = mask_generator.generate_bits(precision)
for b in range(0, len(message_bits)):
message_bits[b] = message_bits[b] ^ mask_bits[b]
# Get selected index based on binary fraction from message bits
message_idx = bits2int(reversed(message_bits))
selection = (cum_probs > message_idx).nonzero()[0].item()
# Calculate new range as ints
new_int_bottom = cum_probs[selection-1] if selection > 0 else cur_interval[0]
new_int_top = cum_probs[selection]
# Convert range to bits
new_int_bottom_bits_inc = list(reversed(int2bits(new_int_bottom, precision)))
new_int_top_bits_inc = list(reversed(int2bits(new_int_top-1, precision))) # -1 here because upper bound is exclusive
# Consume most significant bits which are now fixed and update interval
num_bits_encoded = num_same_from_beg(new_int_bottom_bits_inc, new_int_top_bits_inc)
i += num_bits_encoded
# Gather statistics
total_log_probs += log_probs[selection].item()
q = probs_final.double()/probs_final.sum()
logq = q.log()
total_kl += kl(q, logq, log_probs[:len(q)])
total_entropy_ptau += entropy_in_this_distribution
total_num_for_stats += 1
# Update history with new token
prev = indices[selection].view(1)
output = torch.cat((output, prev))
total_num += 1
# For text->bits->text
partial = enc.decode(output[len(context):].tolist())
if '<eos>' in partial:
break
avg_NLL = -total_log_probs/total_num_for_stats
avg_KL = total_kl/total_num_for_stats
# avg_Hq = total_entropy_ptau/total_num_for_stats
words_per_bit = total_num_for_stats/i
return output[len(context):].tolist(), avg_NLL, avg_KL, words_per_bit
def decode_meteor(model, enc, text, context, device='cpu', temp=1.0, precision=16, topk=50000, is_sort=False, input_key=sample_key, input_nonce=sample_nonce_counter):
# inp is a list of token indices
# context is a list of token indices
inp = enc.encode(text)
context = torch.tensor(context[-1022:], device=device, dtype=torch.long)
mask_generator = DRBG(input_key, sample_seed_prefix + input_nonce)
max_val = 2**precision
threshold = 2**(-precision)
cur_interval = [0, max_val] # bottom inclusive, top exclusive
prev = context
past = None
message = []
with torch.no_grad():
i = 0
while i < len(inp):
logits, past = model(prev.unsqueeze(0), past=past)
past = limit_past(past)
logits[0, -1, -1] = -1e20 # endoftext can't happen
logits[0, -1, 628] = -1e20 # 2 newlines can't happen
logits, indices = logits[0, -1, :].sort(descending=True)
logits = logits.double()
logits_temp = logits / temp
log_probs_temp = F.log_softmax(logits_temp, dim=0)
probs_temp = F.softmax(logits_temp, dim=0)
# Cutoff low probabilities that would be rounded to 0
cur_int_range = cur_interval[1]-cur_interval[0]
cur_threshold = 1/cur_int_range
k = min(max(2, (probs_temp < cur_threshold).nonzero()[0].item()), topk)
probs_temp_int = probs_temp[:k] # Cutoff all but top k
# Rescale to correct range
probs_temp_int = probs_temp_int/probs_temp_int.sum()*cur_int_range
entropy_in_this_distribution = entropy(probs_temp, log_probs_temp)
# Round probabilities to integers given precision
probs_temp_int = probs_temp_int.round().long()
if is_sort:
probs_temp_int, indices = bin_sort(probs_temp_int, indices, cur_int_range, entropy_in_this_distribution, device)
cum_probs = probs_temp_int.cumsum(0)
# Remove any elements from the bottom if rounding caused the total prob to be too large
overfill_index = (cum_probs > cur_int_range).nonzero()
if len(overfill_index) > 0:
cum_probs = cum_probs[:overfill_index[0]]
k = overfill_index[0].item()
# Add any mass to the top if removing/rounding causes the total prob to be too small
cum_probs += cur_int_range-cum_probs[-1] # add
# Covnert to position in range
cum_probs += cur_interval[0]
rank = (indices == inp[i]).nonzero().item()
# Handle most errors that could happen because of BPE with heuristic
if rank >= k:
true_token_text = enc.decoder[inp[i]]
for rank_idx in range(k):
prop_token_text = enc.decoder[indices[rank_idx].item()]
# common case that is not caught
if inp[i] == 128 and indices[rank_idx] == 198:
rank = rank_idx
inp[i] = indices[rank_idx].item()
break
# Is there a more likely prefix token that could be the actual token generated?
if len(prop_token_text) <= len(true_token_text) and \
prop_token_text == true_token_text[:len(prop_token_text)]:
rank = rank_idx
suffix = true_token_text[len(prop_token_text):]
suffix_tokens = enc.encode(suffix) # a list
inp[i] = indices[rank_idx].item()
inp[i+1:i+1] = suffix_tokens # insert suffix tokens into list
break
# Is there a more likely longer token that could be the actual token generated?
elif len(prop_token_text) > len(true_token_text) and \
true_token_text == prop_token_text[:len(true_token_text)]:
whole_text = true_token_text
num_extra = 1
while len(whole_text) < len(prop_token_text):
whole_text += enc.decoder[inp[i+num_extra]]
num_extra += 1
if prop_token_text == whole_text[:len(prop_token_text)]:
rank = rank_idx
inp[i] = indices[rank_idx].item()
for j in range(1, num_extra):
del inp[i+j]
if len(whole_text) > len(prop_token_text):
suffix = whole_text[len(prop_token_text):]
suffix_tokens = enc.encode(suffix) # a list
inp[i+1:i+1] = suffix_tokens # insert suffix tokens into list
break
else:
print('Unable to fix BPE error: token received: %s=%d, text: %s' % (true_token_text, inp[i], text))
rank = 0
selection = rank
# Calculate new range as ints
new_int_bottom = cum_probs[selection-1] if selection > 0 else cur_interval[0]
new_int_top = cum_probs[selection]
# Convert range to bits
new_int_bottom_bits_inc = list(reversed(int2bits(new_int_bottom, precision)))
new_int_top_bits_inc = list(reversed(int2bits(new_int_top-1, precision))) # -1 here because upper bound is exclusive
# Emit most significant bits which are now fixed and update interval
num_bits_encoded = num_same_from_beg(new_int_bottom_bits_inc, new_int_top_bits_inc)
if i == len(inp)-1:
new_bits = new_int_bottom_bits_inc
else:
new_bits = new_int_top_bits_inc[:num_bits_encoded]
# Get the mask and apply it to the recovered bits
mask_bits = mask_generator.generate_bits(precision)
for b in range(0, len(new_bits)):
new_bits[b] = new_bits[b] ^ mask_bits[b]
message += new_bits
# Update history with new token
prev = torch.tensor([inp[i]], device=device, dtype=torch.long)
i += 1
return message